CS 417 – DISTRIBUTED SYSTEMS

Week 11: Content Delivery Part 3: Content Delivery Networks

Paul Krzyzanowski

© 2022 Paul Krzyzanowski. No part of this content may be reproduced or reposted in whole or in part in any manner without the permission of the copyright owner.

ecture

Notes

How do you update ~1B phones

... or enable millions of people to stream the same video?

iOS 16 brings a redesigned Lock Screen with new ways to customize and widgets for information at a glance. Link your Lock Screen to a Focus and use Focus filters to filter out distracting content in apps. Big updates to Messages let you edit or unsend a message you just sent. Visual Look Up lets you lift the subject of an image from the background and copy and

Motivation

- Serving content from one location presents problems
 - Scalability
 - Reliability
 - Performance
- "Flash crowd" problem
 - What if everyone comes to your site at once?
- What do we do?
 - Cache content and serve requests from multiple servers at the network edge (close to the user)
 - Reduce demand on site's infrastructure
 - Provide faster service to users: content comes from nearby servers

Focus on Content

- Computing is still done by the site host's server(s)
- Offload the static parts they often make up the bulk of the bytes:
 - Images
 - Video
 - CSS files
 - Static pages

Serving & Consuming Content

Every request goes to the server.

Repeated requests from one client may be optimized by browser-based caching

... but that cached data is local to the browser

CS 417 © 2022 Paul Krzyzanowski

Caching proxy in an organization.

Take advantage of what others before you have recently accessed.

Load Balancing

Increase capacity at the server.

Internet connectivity can be a bottleneck ... + latency from client to server.

CS 417 © 2022 Paul Krzyzanowski

Internet End-to-End Packet Delivery

CS 417 © 2022 Paul Krzyzanowski

Multihoming

- Get network links from multiple ISPs
- · Server has one IP address but multiple links
- Announce address to upstream routers via BGP:

Provides clients with a choice of routes and fault tolerance for a server's ISP going down

Mirroring (Replication)

- Synchronize multiple servers
- Use multiple ISPs: location-based load balancing, ISP & server fault tolerance

Improving scalability, availability, & performance

Scalability

- Mirror (replicate) servers for load balancing among multiple servers
- Multiple ISPs if network congestion is a concern

Availability

- Replicate servers
- Multiple data centers & ISPs

Performance

- Cache content and serve requests from multiple servers at the network edge (close to the user)
 - Reduce demand on site's infrastructure
 - Provide faster service to users
 - Content comes from nearby servers

But these approaches have challenges!

Local balancing

- Data center or ISP can fail

Multihoming

- IP protocols (BGP) are often not quick to find new routes

Mirroring at multiple sites

- Synchronization can be difficult

Proxy servers

- Typically, a client-side solution
- Low cache hit rates

All require extra capacity and extra capital costs

Akamai Distributed Caching

- Company evolved from MIT research
- "Invent a better way to deliver Internet content"
- Tackle the "flash crowd" problem

- Akamai runs on ~345,000 servers in ~1,300 networks across ~135 countries
 - Delivers 15-30% of all web traffic ... reaching over 100 Terabits per second
 - Used by
 - More than 950 enterprise hardware and software companies
 - More than 850 retailers
 - · More than 300 of the world's banks and 325 financial services firms
 - More than 275 telcos, carriers, and ISPs
 - More than 226 broadcast and pay TV networks
 - More than 225 game publishers

• ...

Content Delivery as a Service

- Huge Internet companies (e.g., Google, Microsoft, Amazon, Facebook, Apple) run their own CDNs
 - Redundant, globally-distributed data centers connected to many ISPs
- For most companies, it doesn't make sense
 - Huge capital expense
 - Huge operating costs
 - Capacity is not always needed, so most networks & servers will be underutilized

CDNs are a service

- Let someone else scalable content delivery

Content Delivery as a Service

Forecast: global content delivery network internet traffic 2017-2022 (in exabytes per month)

Further information regarding this statistic can be found on <u>page 8</u>. **Source(s):** Cisco Systems; <u>ID 267184</u>

CDN Providers – Market Share

Akamai	35%
Fastly	13%
Verizon EdgeCast	12%
AWS CloudFront	10%
Self Service CDNs	12%
Cloudflare	5%

Source: T4 CDN Market Share – January 23, 2021

https://www.t4.ai/industry/cdn-market-share

CDN Structure: Pushing & Pulling

Push CDNs

- Origin must store content manually onto delivery nodes
- Pull CDNs
 - Delivery nodes request content from the origin

CDN Structure: Storage, Delivery & Control

Akamai's goal

Try to serve clients from caching servers that are:

- Nearest: lowest round-trip time
- Available: server that is not too loaded
- Likely: server that is likely to have the data

Overlay Network

The Internet is a collection of many autonomous networks

- Routing is based on business decisions
 - Peering agreements, not performance
- An ISP's top performance incentives are:
 - Last-mile connectivity to end users
 - Connectivity to servers on the ISP

Akamai's Overlay network

- Collection of caching servers at many, many ISPs
- All know about each other
- High-performance routing & tiered distribution

Overlay Network: (1) DNS Lookup

1. Domain name lookup

- Translated by mapping system to an edge server that can serve the content
- Use custom dynamic DNS servers
 - Origin sets up a DNS CNAME (alias) record to point to an Akamai domain (e.g., www.example.com.edgesuite.net)
 - Take requestor's address into into account to find the *nearest* edge
- Resolve a host name based on:
 - User location (minimize network distance)
 - Server health
 - Server load
 - Network status
 - Load balancing
- Try to find an edge server at the customer's ISP

Overlay Network: (2) Multi-Tier Content Lookup

2. Browser sends request to the given edge server

- Edge server may be able to serve content from its cache
- If the content is not found, broadcast the query to other edge servers in the region
- If the content is not found, ask the parent server
- If the content is not found, the parent asks its peers (other parent servers)
- Finally, contact the origin server via the transport system

Benefits of a CDN

- 1. Caching
- 2. Routing
- 3. Security
- 4. Analytics
- 5. Cost

1. Caching

- Goal: Increase hit rate on edge servers
 - Reduce hits on origin servers
- Two-level caching
 - If edge servers don't have the data, check with parent servers
- Static content can be served from caches
 - Dynamic content still goes back to the origin

1. Caching: types of content

- Static content
 - Cached depending on original site's requirements (never to forever)

Dynamic content

- Caching proxies cannot do this
- Akamai uses Edge Side Includes technology (www.esi.org)
 - Assembles dynamic content on edge servers
 - Similar to server-side includes
 - Page is broken into fragments with independent caching properties
 - Assembled on demand

Streaming media

- Live stream is sent to an entry-point server in the CDN network
- Stream is delivered from the entry point server to multiple edge servers
- Edge servers serve content to end users

2. Routing

- Route to parent servers or origin via the overlay network
- Routing decision factors:
 - measured latency
 - packet loss
 - available bandwidth
- Results in ranked list of alternate paths from edge to origin
- Each intermediate node acts as a forwarder
 - Keep TCP connections active for efficiency

3. Security

• High capacity

- Overwhelm DDoS attacks

Expertise

- Maintain systems and software

• Extra security software

- Hardened network stack
- Detect & defend attacks
- Shield the origin
 - Attacks hit the CDN, not the origin

4. Analytics

- Reports on quality of service, latency, media performance
- Engagement: # views, duration, abandoned plays
- Geography: zip code, continent, region, ISP
- Clients: devices, operating systems
- Most popular content
- Session: bandwidth, referrer URL, session duration

Collect network performance data

Map network topology

- Based on BGP and traceroute information
- Estimate hops and transit time

Monitor load

- Content servers report their load to a monitoring application
- Monitoring app publishes load reports to a local (Akamai) DNS server

Assign servers

- Dynamic DNS server determines which IP addresses to return when resolving names

Load shedding:

- If servers get too loaded, the DNS server will not respond with those addresses

5. Cost

- Infrastructure on demand
 - CDN absorbs majority of content
- Instant worldwide scaling based on demand
- Business advantages

Video Streaming via CDNs

How is live video different?

- Live video cannot be cached
 - Progressive downloads watch video while downloading
 - vs. direct downloads download first, watch later
- HTTP Live Streaming (HLS): most popular way to access video
 - Use generic HTTP servers
 - Deliver on-demand video just like any other content
- Adaptive bitrate coding (ABR) added at CDN
 - Break video stream to chunks (between 2-10 seconds)
 - CDN encodes chunks at various bitrates (quality & resolution)
 - Uses feedback from user's playback client to pick optimal next chunk
 - Revise constantly

ABR Transcoding

CS 417 © 2022 Paul Krzyzanowski

Server-side Video Ad Insertion

- Pre-roll, post-roll, mid-roll, overlay, etc.
- Clickable ads, skippable ads
- Integrate with ad servers (DoubleClick, LiveRail, Tremor, YuMe, ...)
- Supported by Google Dynamic Ad Insertion, Amazon AWS Server-Side Ad Insertion, Limelight Orchestrate[™], Verizon Smartplay, …

Example: Limelight Reach Ads

The End