
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 11: Content Delivery 
Part 3: Memory Caching

© 2023 Paul Krzyzanowski. No part of this 
content may be reproduced or reposted in 
whole or in part in any manner without the 
permission of the copyright owner.



Caching
Purpose of a cache
• Temporary storage to increase data access speeds
• Increase effective bandwidth by caching most frequently used data

Store raw data from slow devices
• Memory cache on CPUs
• Buffer cache in operating system
• Chubby file data and metadata
• GFS master caches all metadata in memory

Store computed data
• Avoid the need to look the same thing up again
– Results of database queries or file searches
– Spark RDDs in memory

April 9, 2023 CS 417 © 2023 Paul Krzyzanowski 2



What would you use a caching service for?
Cache user session state on web application servers

No need to have user come back to the same computer

Cache user preferences, shopping carts, etc.
Avoid repeated database lookups (e.g., key-value data)

Cache rendered web pages
Avoid re-processing server-side includes, JSP/ASP/PHP code

Cache precomputed results
Avoid re-computing data that gets reused
(Spark RDDs, news posts, inventory status, …)

3April 9, 2023 CS 417 © 2023 Paul Krzyzanowski



User-facing 
ServiceUser-facing 

Service
User-facing 

Service
User-facing 

Service

Distributed In-Memory Caching as a Service
A network memory-based caching service

Shared by many – typically used by front-end services

Stores frequently-used (key, value) data
Old data gets evicted

General purpose
Not tied to a specific back-end service

Not transparent (usually)
Because it’s a general-purpose service, the programmer gets involved

4

Cache

Back-end 
service

User-facing 
Service

lo
ok

 h
er

e 
fir

st if not found

then look here

April 9, 2023 CS 417 © 2023 Paul Krzyzanowski



Deployment Models
Separate caching server

One or more computers whose sole purpose is to provide a caching service

Or share cache memory among servers
Take advantage of free memory from lightly-loaded nodes 

5

User-facing Service

User-facing Service

User-facing Service

Cache server

Cache server

Cache server

April 9, 2023 CS 417 © 2023 Paul Krzyzanowski

User-facing Service

User-facing Service

User-facing Service

Cache server

Cache server

Cache server



Example: memcached
Free & open source distributed memory caching

Used by
Dropbox, Facebook, Wikipedia, Flickr, Twitter, 
YouTube, Instagram, Digg, Bebo, WordPress, Craigslist, …

Protocol
Binary & ASCII versions

Client APIs for
Command line, C/C++, C#, Go, PHP, Java, Python, Ruby, Perl, Erlang, Lua, LISP, 
Windows/.NET, mySQL, PostgreSQL, ColdFusion, …

April 9, 2023 CS 417 © 2023 Paul Krzyzanowski 6

memcached.org



Memcached structure
Key-Value store
– Cache is made up of { key, value, expiration time, flags }
– All access is O(1)

Client software
– Provided with a list of memcached servers
– Hash(key) chooses a server based on the key

Server software
– Stores keys and values in an in-memory hash table
– Throw out old data when necessary
• LRU cache and time-based expiration
• Objects expire after a minute to ensure stale data is not returned

– Servers are unaware of each other

April 9, 2023 CS 417 © 2023 Paul Krzyzanowski 7



Memcached API
Commands sent over TCP (UDP also available)

Connection may be kept open indefinitely

Commands
Storage

• Storage commands take an expiration time in seconds from 
current time or 0 = forever (but may be deleted)

• set – store data
• add – store data only if the server does not have data for the key
• replace – store data if the server does have data for the key
• append – add data after existing data
• prepend – add data before existing data
• cas – check & set: store data only if no one else updated it since I fetched it 

(cas = unique, 64-bit value associated with the item)
Retrieval

• get – retrieve one or more keys: returns key, flags, bytes, and cas unique

8April 9, 2023 CS 417 © 2023 Paul Krzyzanowski



Memcached API
Commands

Deletion
• delete key

Increment/decrement
• Treat data as a 64-bit unsigned integer and add/subtract value
• incr key value – increment key by value 
• decr key value – decrement key by value 

Update expiration
• touch key exptime – Update the expiration time

Get Statistics
• stats – various options for reporting statistics

Flush
• flush_all – clear the cache

9April 9, 2023 CS 417 © 2023 Paul Krzyzanowski



Redis
Memory cache + in-memory database + message broker
Open source: see redis.io
Text-based command interface
Features
– Key-value store
– Transactions
– Publish/subscribe messaging
– Expiration of data
– Built-in replication
– Optional disk persistence 
– Lua scripting (via EVAL command)
– Automatic partitioning with Redis Cluster

Used by: Twitter, GitHub, Weibo, Pinterest, Snapchat, Craigslist, Digg, StackOverflow, Flickr, Shopify, Hulu, Trello, Uber, 
Coinbase, …

10April 9, 2023 CS 417 © 2023 Paul Krzyzanowski



Redis Data Types
Strings
– Simplest type; only type supported in 

memcached)

Lists
– Collections of strings sorted by order of 

insertion

Sets
– Collections of unique, unsorted strings

Sorted sets
– Every element is associated with a score

(floating point number)
– Elements sorted by score
– Operations to retrieve ranges (e.g., top 10, 

bottom 10)

Hashes
– Maps of fields associated with values 

(fields & values are strings)

Bitmaps
– Commands to treat strings as bits 

(set/clear bits)

HyperLogLogs
– Probabilistic data structure to estimate the 

cardinality of a set
• Count # of unique items without storing 

the entire set of items
– Use a fixed amount of memory

11April 9, 2023 CS 417 © 2023 Paul Krzyzanowski



Redis as a memory cache: Timeouts & Evictions
Set expiration for specific keys
– Associate a timeout with a key
– Key deleted after the timeout

SET mykey “hello”
EXPIRE mykey 10 expire key in 10 seconds

Tell the cache to automatically evict (delete) old data
Methods of eviction
• LRU (least recently used)
• LRU only for keys that have an expiration time
• Random
• Random only for keys that have an expiration time

12April 9, 2023 CS 417 © 2023 Paul Krzyzanowski



Redis as an in-memory database
MULTI
– Mark the start of a transaction (operations queued until EXEC)

EXEC
– Execute queued commands in a transaction

DISCARD
– Abort transaction & revert to previous values

WATCH
– Test-and-set behavior to ensure mutual exclusion
– Monitor keys to detect changes
– Abort if change takes place

13April 9, 2023 CS 417 © 2023 Paul Krzyzanowski



Redis as a message broker
Publish/subscribe model
– Senders (publishers) do not send messages to specific receivers
– Messages go to channels
– Subscribers listen to one or more channels, receiving messages of interest

Allows for scalability and dynamic topology
– Publishers do not know subscribers
– Subscribers do not know publishers

Support for pattern-based channels
– Subscribe to all channel names matching a pattern

April 9, 2023 CS 417 © 2023 Paul Krzyzanowski 14



Redis partitioning
Data can be partitioned across multiple computers

Types of partitions
• Range partitioning
– Use table that maps ranges to instances

• Hash partitioning
– Based on hash(key): works with any key

Who does the partitioning?
• Client-side partitioning
• Proxy-assisted partitioning
• Query forwarding by a Redis server

15April 9, 2023 CS 417 © 2023 Paul Krzyzanowski



The End

April 9, 2023 16CS 417 © 2023 Paul Krzyzanowski


