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Message Processing
How do we design a computing cluster to process huge, never-ending streams of 
messages from multiple sources?
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Apache Kafka
Kafka is 
• Open-source

• High-performance

• Distributed

• Durable

• Fault-tolerant

• Publish-subscribe messaging system

Messages may be anything:
IoT (Internet of Things) reports, logs, alerts, user activity, data pipelines, …
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Publish-Subscribe Messaging
• Publishers send streams of messages = producers

• Subscribers receive messages = consumers

• Messaging system = message broker
– Provides a loose coupling between producers & consumers
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Publish-Subscribe Messaging: Message broker
• Message broker stores messages in a queue (log)

• Subscribers retrieve messages from the queue
– First-in, First-out (FIFO) ordering
– Producers & consumers do not have to be synchronized
• Read-write at different rates
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Publish-Subscribe Messaging: Multiple topics
• We will often have multiple message streams
– Different purposes (e.g., IoT temperature reports, error logs, page views, …)
– Different consumers will be interested in different streams

• Streams are identified by a topic
– Publishers send messages to a topic and subscribers subscribe to a topic
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Publish-Subscribe Messaging: Brokers
• Kafka runs as a cluster on one or more servers
• Each server is called a broker
– A Kafka deployment may have anywhere from 1 to 1000s of brokers

• Kafka can feed messages to
– Real-time systems: e.g., Spark Streaming
– Batch processing: e.g., store to Amazon S3 or HDFS & then use MapReduce or Spark
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Partitions
• Each topic is stored as a partitioned log
– One message log is broken up (partitioned) into multiple smaller logs
– Each chunk is a partition and can be stored on a different server

• A partitioned log enables messages for a topic to scale beyond the
capacity of a single
server
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Partitions
Partition = ordered, immutable sequence of messages that is continually 
appended to

• Each message record contains a sequential ID # to identify
the message in its partition

CS 417 © 2022 Paul Krzyzanowski 9

Topic X

Se
rv
er

Se
rv
er

Se
rv
er

Se
rv
er

M0

M10

Partition 0

Partition 1

Partition 2

Partition 3 M14 M13

M4

M9

M1

M2

M5

M3

M11 M8 M7 M6

EarliestLatest

M15

Producers
Producers

Producers
Producers

Producers
Consumers



Fault Tolerance & Replication
• Messages in a partition are durable: written to disk
– Persist for a configurable time period – then erased

• One server is elected to be the leader for a partition
– 0 or more other servers are followers
– Replication amount is configurable
– Leader handles all 

read/write requests (like Raft)
• Clients do not communicate

with followers
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Fault Tolerance & Replication
What if the leader dies after receiving a message but before replicating it to 
followers?

Producer can choose:

• Receive acknowledgement when the broker receives a message

• Receive acknowledgement 
only when the message is 
replicated to followers
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Achieving Scale
Producers
• Clients choose which partition to write message to
– Default: round-robin distribution to balance load evenly across multiple brokers

• Create more partitions for a topic ⇒ more load distribution

Consumers
• Consumer group = one or more consumers

• Group members share the same message queue for the topic
– Messages to the topic get distributed among the members of the consumer group

• More consumers in a group ⇒ more processing capacity
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Queuing vs. Publish-Subscribe
Queuing model
• Pool of consumers that take messages from a shared queue
• When any consumer gets a message, it is out of the queue
• Only one consumer gets each message
• Great for distributing processing among multiple subscribers
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Queuing or Publish-Subscribe model? Kafka offers both!
• With consumer groups, consumers can distribute messages among a collection of processes
• Each consumer group provides a publish-subscribe model
– Consumers can join separate groups to receive the same set of messages

Queuing vs. Publish-Subscribe
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Queuing vs. Publish-Subscribe
Publish-Subscribe model
• Each consumer that subscribes to a topic will get every message for that topic

• Allows multiple clients to share the same data … but does not scale
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Zookeeper
Kafka uses (used) Apache ZooKeeper for coordination

• ZooKeeper ≈ Google Chubby
– Getting heartbeats from brokers
– Leader election
– Configuring replication settings
– Tracking members of cluster
– Etc.

• Producers
– Use it to find partitions for a topic

• Consumers
– Use it to track the current 

index # (offset) of the next message
in each partition they’re reading
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Since April 2021, Kafka can be configured to run 
without ZooKeeper
• Added support for an internal Raft quorum (reliable 

log replication)
• Metadata can now be stored inside Kafka as a log

– Internal topic called @metadata
– Replicated via Raft
– Brokers can get updates by reading the tail of 

this log



Disk storage
Kafka provides durable message logs
• Messages will not be lost if the system dies and restarts

But disks are slow … even SSDs!
• Not necessarily
• Huge performance difference between random block access and sequential access
• Kafka optimizes for large sequential writes & reads
– Disk operations can be thousands of times 

faster than random access
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Apache Kafka is
• Open-source
– Developed by LinkedIn and donated to the Apache Software Foundation, writteb in Scala and Java

• High-performance
– Scalable to handle huge volumes of incoming messages by partitioning each message queue (log) among multiple 

servers
– Partitioned log enables the log to be larger than the capacity of any one server
– Consumer groups enable the scaling of message processing

• Distributed
– Each message queue (log) is divided among multiple servers

• Durable
– Message logs are written to disk (via large streaming writes for best performance)

• Fault-tolerant
– Support for redundancy with a leader & followers per partition

• Publish-subscribe messaging system
– Publish & subscribe to topics
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Kafka Summary
• Solved the problem of dealing with continuous data streams

• Solves the scaling problem by using partitioned logs

• Supports both single queue & publish-subscribe models

• Message ordering is guaranteed per-partition only

• Well-used, proven performance
– Activision, AirBnB, Tinder, Pinterest, Uber, Netflix, LinkedIn, Microsoft, many 

banks, …
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The End
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