
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 11: Content Delivery 
Part 3: Event Streaming – Kafka

© 2022 Paul Krzyzanowski. No part of this 
content may be reproduced or reposted in 
whole or in part in any manner without the 
permission of the copyright owner.



Message Processing
How do we design a computing cluster to process huge, never-ending streams of 
messages from multiple sources?

CS 417 © 2022 Paul Krzyzanowski 2

U
se

r a
ct

iv
ity

Sy
st

em
 lo

gs
Se

ns
or

 d
at

a

processing

processing

processing

processing

processing

processing

processing

processing

processing



Apache Kafka
Kafka is 
• Open-source

• High-performance

• Distributed

• Durable

• Fault-tolerant

• Publish-subscribe messaging system

Messages may be anything:
IoT (Internet of Things) reports, logs, alerts, user activity, data pipelines, …

CS 417 © 2022 Paul Krzyzanowski 3



Publish-Subscribe Messaging
• Publishers send streams of messages = producers

• Subscribers receive messages = consumers

• Messaging system = message broker
– Provides a loose coupling between producers & consumers

CS 417 © 2022 Paul Krzyzanowski 4

Publisher

Publisher

Publisher

Publisher

Subscriber

Subscriber

Subscriber

M0

M0

M0

M1M2M3

M4

M5

M6

M7

Message broker

SubscriberM0

SubscriberM0

Producers Consumers



Publish-Subscribe Messaging: Message broker
• Message broker stores messages in a queue (log)

• Subscribers retrieve messages from the queue
– First-in, First-out (FIFO) ordering
– Producers & consumers do not have to be synchronized
• Read-write at different rates

CS 417 © 2022 Paul Krzyzanowski 5

Publisher

Publisher

Publisher

Publisher

Subscriber

Subscriber

Subscriber

M0

M0

M0

M1M2M3

M4

M5

M6

M7

Message broker

SubscriberM0

SubscriberM0

Producers Consumers



Publish-Subscribe Messaging: Multiple topics
• We will often have multiple message streams
– Different purposes (e.g., IoT temperature reports, error logs, page views, …)
– Different consumers will be interested in different streams

• Streams are identified by a topic
– Publishers send messages to a topic and subscribers subscribe to a topic

CS 417 © 2022 Paul Krzyzanowski 6

Publisher

Publisher

Publisher

Publisher

Subscriber

Subscriber

Subscriber

M0

M0

M0

M1M2M3
M4

M5

M6

N5

Message broker

SubscriberM0

SubscriberM0
Topic: logs

Topic: alerts
N1N2N3

M3

N4
N0

Producers Consumers



Publish-Subscribe Messaging: Brokers
• Kafka runs as a cluster on one or more servers
• Each server is called a broker
– A Kafka deployment may have anywhere from 1 to 1000s of brokers

• Kafka can feed messages to
– Real-time systems: e.g., Spark Streaming
– Batch processing: e.g., store to Amazon S3 or HDFS & then use MapReduce or Spark

CS 417 © 2022 Paul Krzyzanowski 7

Publisher

Publisher

Publisher

Publisher

Subscriber

Subscriber

Subscriber

M0

M0

M0

M1M2M3
M4

M5

M6

N5

Message broker

SubscriberM0

SubscriberM0
Topic: logs

Topic: alerts
N1N2N3

M3

N4
N0

Producers Consumers



Partitions
• Each topic is stored as a partitioned log
– One message log is broken up (partitioned) into multiple smaller logs
– Each chunk is a partition and can be stored on a different server

• A partitioned log enables messages for a topic to scale beyond the
capacity of a single
server

CS 417 © 2022 Paul Krzyzanowski 8

Topic X

Se
rv
er

Se
rv
er

Se
rv
er

Se
rv
er

M0

M10

Partition 0

Partition 1

Partition 2

Partition 3 M14 M13

M4

M9

M1

M2

M5

M3

M11 M8 M7 M6

Earliest messageLatest

M15

Producers
Producers

Producers
Producers

Producers
Consumers



Partitions
Partition = ordered, immutable sequence of messages that is continually 
appended to

• Each message record contains a sequential ID # to identify
the message in its partition

CS 417 © 2022 Paul Krzyzanowski 9

Topic X

Se
rv
er

Se
rv
er

Se
rv
er

Se
rv
er

M0

M10

Partition 0

Partition 1

Partition 2

Partition 3 M14 M13

M4

M9

M1

M2

M5

M3

M11 M8 M7 M6

EarliestLatest

M15

Producers
Producers

Producers
Producers

Producers
Consumers



Fault Tolerance & Replication
• Messages in a partition are durable: written to disk
– Persist for a configurable time period – then erased

• One server is elected to be the leader for a partition
– 0 or more other servers are followers
– Replication amount is configurable
– Leader handles all 

read/write requests (like Raft)
• Clients do not communicate

with followers

CS 417 © 2022 Paul Krzyzanowski 10

M0Partition 0 M1 M2 M3

Leader

M0Partition 0 M1 M2 M3

Follower 0

M0Partition 0 M1 M2 M3

Follower 1

Write messagesRead messages



Fault Tolerance & Replication
What if the leader dies after receiving a message but before replicating it to 
followers?

Producer can choose:

• Receive acknowledgement when the broker receives a message

• Receive acknowledgement 
only when the message is 
replicated to followers

CS 417 © 2022 Paul Krzyzanowski 11

M0Partition 0 M1 M2 M3

Leader

M0Partition 0 M1 M2 M3

Follower 0

M0Partition 0 M1 M2 M3

Follower 1

Write messagesRead messages



Achieving Scale
Producers
• Clients choose which partition to write message to
– Default: round-robin distribution to balance load evenly across multiple brokers

• Create more partitions for a topic ⇒ more load distribution

Consumers
• Consumer group = one or more consumers

• Group members share the same message queue for the topic
– Messages to the topic get distributed among the members of the consumer group

• More consumers in a group ⇒ more processing capacity

CS 417 © 2022 Paul Krzyzanowski 12



Queuing vs. Publish-Subscribe
Queuing model
• Pool of consumers that take messages from a shared queue
• When any consumer gets a message, it is out of the queue
• Only one consumer gets each message
• Great for distributing processing among multiple subscribers

CS 417 © 2022 Paul Krzyzanowski 13

Subscriber

Subscriber

SubscriberM0

M1

M2

M3M4M5M6

Queuing Model



Queuing or Publish-Subscribe model? Kafka offers both!
• With consumer groups, consumers can distribute messages among a collection of processes
• Each consumer group provides a publish-subscribe model
– Consumers can join separate groups to receive the same set of messages

Queuing vs. Publish-Subscribe

CS 417 © 2022 Paul Krzyzanowski 14

Subscriber

Subscriber

SubscriberM0

M0

M0

M1M2M3M4

Publish-Subscribe Model

Subscriber

Subscriber

SubscriberM0

M1

M2

M3M4M5M6

Queuing Model

One consumer group

Separate consumer groups



Queuing vs. Publish-Subscribe
Publish-Subscribe model
• Each consumer that subscribes to a topic will get every message for that topic

• Allows multiple clients to share the same data … but does not scale

CS 417 © 2022 Paul Krzyzanowski 15

Subscriber

Subscriber

SubscriberM0

M0

M0

M1M2M3M4

Publish-Subscribe Model



Zookeeper
Kafka uses (used) Apache ZooKeeper for coordination

• ZooKeeper ≈ Google Chubby
– Getting heartbeats from brokers
– Leader election
– Configuring replication settings
– Tracking members of cluster
– Etc.

• Producers
– Use it to find partitions for a topic

• Consumers
– Use it to track the current 

index # (offset) of the next message
in each partition they’re reading

CS 417 © 2022 Paul Krzyzanowski 16

Since April 2021, Kafka can be configured to run 
without ZooKeeper
• Added support for an internal Raft quorum (reliable 

log replication)
• Metadata can now be stored inside Kafka as a log

– Internal topic called @metadata
– Replicated via Raft
– Brokers can get updates by reading the tail of 

this log



Disk storage
Kafka provides durable message logs
• Messages will not be lost if the system dies and restarts

But disks are slow … even SSDs!
• Not necessarily
• Huge performance difference between random block access and sequential access
• Kafka optimizes for large sequential writes & reads
– Disk operations can be thousands of times 

faster than random access

CS 417 © 2022 Paul Krzyzanowski 17



Apache Kafka is
• Open-source
– Developed by LinkedIn and donated to the Apache Software Foundation, writteb in Scala and Java

• High-performance
– Scalable to handle huge volumes of incoming messages by partitioning each message queue (log) among multiple 

servers
– Partitioned log enables the log to be larger than the capacity of any one server
– Consumer groups enable the scaling of message processing

• Distributed
– Each message queue (log) is divided among multiple servers

• Durable
– Message logs are written to disk (via large streaming writes for best performance)

• Fault-tolerant
– Support for redundancy with a leader & followers per partition

• Publish-subscribe messaging system
– Publish & subscribe to topics

CS 417 © 2022 Paul Krzyzanowski 18



Kafka Summary
• Solved the problem of dealing with continuous data streams

• Solves the scaling problem by using partitioned logs

• Supports both single queue & publish-subscribe models

• Message ordering is guaranteed per-partition only

• Well-used, proven performance
– Activision, AirBnB, Tinder, Pinterest, Uber, Netflix, LinkedIn, Microsoft, many 

banks, …

CS 417 © 2022 Paul Krzyzanowski 19



The End

20CS 417 © 2022 Paul Krzyzanowski


