CS 419: Computer Security

Week 3: Code Injection

© 2022 Paul Krzyzanowski. No part of this
content, may be reproduced or reposted in

PaUI Krzyzan OWS kl whole or in part in any manner without the

permission of the copyright owner.

Program Hijacking

zzzzzzzzzzzzzz

Hijacking & Injection

Hijacking
Getting software to do something different from what the user or developer expected
« Session hijacking

— Take over someone’s communication session (typically from a web browser)
* Usually involves stealing a session token that identifies the user and authorizes access

* Program hijacking
— Get a program to execute unintended operations
— Command injection

« Send commands to a program that are then executed by the system shell
* Includes SQL injection — send database commands

— Code injection
* Inject code into a program that is then executed by the application

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 3

Examples of Hijacking

Session hijacking
— Snoop on a communication session to get authentication info and take control of the session

Code injection

— Overflow an input buffer and cause new code to run

— Provide JavaScript as input that will later get executed (Cross-site scripting)

— Library injection: load different dynamic libraries that cause different versions of code run

Command injection
— Provide input that will get interpreted and run as a system command
— Change search paths to run different programs

Other forms

— Redirect web browser to a malicious site
— Change DNS (IP address lookup) results
— Change search engine

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 4

Security-Sensitive Programs

« Control hijacking isn’t interesting for regular programs on your system
— You might as well just run commands from the shell

* It is interesting if the program
— Has elevated privileges (setuid), especially runs as root
— Runs on a system you don’t have access to (most servers)

Privileged programs are more sensitive & more useful targets

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 5

Bugs and mistakes

* Most attacks are due to
— Social engineering: getting a legitimate user to do something

— Or bugs: using a program in a way it was not intended
» Bugs include buggy security policies

- Attacked system may be further weakened because of poor access
control rules

— Violate Principle of Least Privilege

« Cryptography won’t help us!
— And cryptographic software can also be buggy

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 6

Unchecked Assumptions

* Unchecked assumptions can lead to vulnerabilities

— Vulnerability: weakness that can be exploited to perform
unauthorized actions

* Attack

— Discover assumptions
— Craft an exploit to render them invalid ... and run the exploit

* Four common assumptions
1. Buffer is large enough for the data
2. Integer overflow doesn’t exist
3. User input will never be processed as a command
4. Afile is in a proper format

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 7

Buffer Overflow

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

What is a buffer overflow?

Programming error that allows more data to be stored in an array than
there is space

» Buffer = stack, heap, or static data

* Overflow means adjacent memory will be overwritten
— Program data can be modified
— New code can be injected
— Unexpected transfer of control can be launched

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 9

Buffer overflows

 Buffer overflows used to be responsible for up to ~50% of
vulnerabilities

* We know how to defend ourselves but
— Average time to patch a bug >> 1 year
— People delay updating systems ... or refuse to

— Embedded systems often never get patched
» Routers, cable modems, set-top boxes, access points, IP phones, and security cameras

— Insecure access rights often help with gaining access or more privileges
— We will continue to write buggy code!

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 10

Buffer overflows ... still going strong

S Security Boulevard

Nov. 19, 2021: NETGEAR meltdown
— Affects 61 different devices s

Home » Security Bloggers Network » NETGEAR CVE-2021-34991 “P: ication Buffer Overflow”

— Allows attackers to execute arbitrary code on routers o

NETGEAR meltdown: CVE-2021-34991 “Pre-Authentication

— Authentication is not required for exploit L .

Aserious and fresh vulnerability discovered in September led to a notice in November from NETGEAR. As you might

. L]
B u g I n U P n P S e rVI Ce O n | ‘ P p O rt 5 OO O expect, that company “strongly recommends that you download the latest firmware as soon as possible”.

« When parsing the uuid request header, the process does —_—
not properly validate the length of user-supplied data prior
to copying it to a fixed-length stack-based buffer.

https://securityboulevard.com/2021/11/netgear-meltdown-cve-2021-34991-pre-authentication-buffer-overflow/

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 11

Buffer overflows ... still going strong

nccgroup®

D ec) 9 ’ 2 O 21 : SO n i CWaI I Privacy Careers Disclosure Policy Technical Advisories Public Reports 2021 Research Report
— Affects SMA (Secure Mobile Access) 100 Series

— Multiple heap-based and stack-based buffer Technical Advisory - SonicWall SMA
100 Series — Multiple

overflows Unauthenticated Heap-based and
— Can be accessed by unauthenticated users igachjsggjif“ffer Overflow (CVE-
— Bug in fileexplorer component

» Unchecked use of strcpy with a fixed size buffer

Vendor URL: https://www.sonicwall.com/

. Versions affected: 10.2.0.8-37sv, 10.2.1.1-19sv
« Assumes username and password will each be <128
500v)
b Author: Richard Warren
yteS <richard.warren[at]nccgroup [dot] trust>

Advisory URL: https://psirt.global.sonicwall.com/vuln-

« Same bug with the domain name

CVE Identifier: CVE-2021-20045
Risk: CVSS 9.4 (Critical)

Summary

SonicWall SMA 100 Series appliances running firmware versions 10.2.0.8-37sv,10.2.1.1-

https://research.nccgroup.com/2021/12/09/technical-advisory-sonicwall-sma-100-series-multiple-unauthenticated-heap-based-and-stack-based-buffer-overflow-cve-2021-20045/

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 12

Buffer overflows ... still going strong

= An official website of the United States govemment t Here's how you know v

cyBersecurmry (@)
& INFRASTRUCTURE D
SECURITY AGENCY

Feb. 2, 2021: Linux sudo
— Heap-based buffer overflow vulnerability

— An attacker could exploit this vulnerability to I - - s

take COHtrOl Of an aﬂ:eCted SyS’[em. Sudo Heap-Based Buffer Overflow Vulnerability — CVE-
2021-3156

Original release date: February 02, 2021 | Last revised: February 04, 2021

Print | [Tweet| [Sena

Sudo has released an advisory addressing a heap-based buffer overflow vulnerability—CVE-2021-3156—affecting sudo legacy

— Off— by -_ O n e e rrO r versions 1.8.2 through 1.8.31p2 and stable versions 1.9.0 through 1.9.5p1. Sudo is a utility included in many Unix- and Linux-

based operating systems that allows a user to run programs with the security privileges of another user. An attacker could
exploit this vulnerability to take control of an affected system.

[] Can reS u |t i n a h eap - b ased b u ﬁe r Ove r-ﬂ OW, !Criz/?;?:::lr:’;%:z::recr::fr:: ::;?:Ezt;f::;:r::(?::.(e to sudo version 1.9.5p2, refer to vendors for available patches, and review

which allows privilege escalation to root via ey .,
"SI.ldoedit _S" and a Command_“ne : il '”a:f’” e':e' “‘"era I.:ydoteb. n79454:. — :

argument that ends with a single backslash
C h ar a Ct e r We recently updated our anonymous product survey; we'd welcome your feedback.

https://www.cisa.gov/uscert/ncas/current-activity/2021/02/02/sudo-heap-based-buffer-overflow-vulnerability-cve-2021-3156

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 13

Buffer overflows ... still going strong

Feb. 5, 2021: Google Chrome Otenave N —
— Buffer overflow vulnerability in V8, Google R

Chrome’s open-source JavaScript and T

WebAssembly englne CVE-2021-21148: Google Chrome Heap Buffer
—_ EXD|OitS in the wild have been observed Overflow Vulnerability Exploited in the Wild

- Al |OWS remOte attaC ker to exp | O it heap CO rru pt i O n FolIowi::i;j:j:::-the-wild exploitation, Google released a patch for the

third browser-based zero-day vulnerability of 2021.

via a crafted HTML page ‘ — _
— Affects Microsoft Edge (Chromium based)

https://www.tenable.com/blog/cve-2021-21148-google-chrome-heap-buffer-overflow-vulnerability-exploited-in-the-wild

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 14

Buffer overflows ... still going strong

ASSURA

J u Iy 2 8 3y 2 0 2 0 - S I G Red V u I n e rab i I ity Avulnerability called “SIGRed” (CVE-2020-1350), exploits a buffer overflow

within the way that Windows DNS Servers process SIG resource record types.
— Exploits buffer overflow in Windows DNS Server P
processing of SIG records

— Allows an attacker to create a denial-of-service

new attack against Windows DNS Servers which can allow an attacker to create
Denial-of-Service conditions and possibly gain Domain Administrator access.

attaC k (& m aybe g et ad m i n aCCGSS) What makes this specific vulnerability unique is that it isnt really new it has been

around for 17 years it is just that no one has discovered it until now. The
vulnerability, called “SIGRed"” (CVE-2020-1350), exploits a buffer overflow within

— Bug existed for 17 years — discovered in 2020!

Jump to TL;DR:

2 0 Q0 {3 No Commen

“Domain Name System (DNS) is one of the industry-standard suites of protocols

A function expects 16-bit integers to be passed to it
« If they are not the proper size, it will overflow other R B o RSN O
. and users (Microsoft, 2020)"
integers |
Essentially, DNS serves as an automated phonebook. You type in the name and
it gives you the phone number by mapping the domain name to the

® AttaCker needs to Create a DNS reSponse that Contains a corresponding IP address. By translating names to IP addresses, DNS makes it

easier for users so that we don’t have to remember all of the IP addresses of our

SlG record > 64 KB favorite sites, just the names.

https://www.assurainc.com/a-vulnerability-called-sigred-cve-2020-1350-exploits-a-buffer-overflow-within-the-way-that-windows-dns-servers-process-sig-resource-record-types/amp-on/

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 15

Another 17 year-old bug

O tenable

. . CVE-2020-8597: Buffer Overflow
March 4, 2020: Point-to-Point Protocol Vulnerability in Point-to-Point

Daemon Protocol Daemon (pppd)

— pppd s used for layer 2 (data link) services that ~ E—
include DSL and VPNs 9O

Multiple widely used Linux distributions are impacted by a critical

— Bug existed for 17 years — discovered in 2020! flaw that has existed in ppp for 17 years
- Attacker creates a specially-crafted Extensible Fosigioung

. . On March 4, researchers at the CERT Coordination Center (CERT/CC) published vulnerability note #782301 for a
Authentlcatlon Pro-tocol EAP m essa e critical vulnerability in the Point-to-Point Protocol Daemon (pppd) versions 2.4.2 through 2.4.8, with disclosure
g credited to Ilja van Sprundel of I0Active.

The Point-to-Point Protocol (PPP) is a full-duplex protocol that enables the encapsulation and transmission of

° | Nco I'reCt bo un d S Ch ec k al |OWS CcO pyl n g an arb I-t rary basic data across Layer 2 or data-link services ranging from dial-up connections to DSL broadband to virtual

private networks (VPNs) implementing SSL encryption. PPP is also used to implement IP and TCP over two

directly connected nodes, as these protocols do not support point-to-point connections. pppd is a daemon on

|en gt h Of data Unix-like operating systems used to manage PPP session establishment and session termination between two

nodes.

Analysis

CVE-2020-8597 is a buffer overflow vulnerability in pppd due to a logic flaw in the packet processor of the
Extensible Authentication Protocol (EAP). An unauthenticated, remote attacker who sends a specially crafted
EAP packet to a vulnerable PPP client or server could cause a denial-of-service condition or gain arbitrary code
execution. As pppd works in conjunction with kernel drivers and often runs with high privileges such as system
or even root, any code execution could also be run with these same p * ™

https://www.tenable.com/blog/cve-2020-8597-buffer-overflow-vulnerability-in-point-to-point-protocol-daemon-pppd

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 16

GRUBZ2 Bootloader

July 29, 2020: GRUB2 bootloader

— Used by most Linux systems and many hypervisors
and Windows systems that use Secure Boot with the
standard Microsoft Third Party UEFI Certificate
Authority

— Vulnerability allows attackers to gain arbitrary code DR
execution during the boot process — even when
Secure Boot is enabled

— Attacker needs to modify the GRUBZ2 config file

 But this allows the attack to persist and launch new
attacks even before the operating system boots

— GRUB2 checks a buffer size for a token
+ But does not quit if the token is too large

https://eclypsium.com/wp-content/uploads/2020/08/Theres-a-Hole-in-the-Boot.pdf

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 17

Exim Mail Server Vulnerability

September 28, 2019: Exim server

— Heap-based buffer overflow vulnerability in
Exim email

— Exim mail transfer agent used on 5 million
systems

— Remote code execution possible because of
abugin string vformat() foundin
string.c

— Length of the string was not properly
accounted for

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

CVE-2019-16928: Critical Buffer
Overflow Flaw in Exim is Remotely
Exploitable

Edge Week 2020: Tenable's Virtual User Conference. Oct 5th to Sth.

CVE-2019-16928, a critical heap-based buffer overflow vulnerability in Exim
email servers, could allow remote attackers to crash Exim or potentially execute
arbitrary code.

Background

Exim Internet Mailer, the popular message transfer agent (MTA) for Unix hosts
found on nearly 5 million systems, is back in the news. Earlier this month, CVE-
2019-158486, a critical remote code execution (RCE) flaw, was patched in Exim
4.92.2. In June, we blogged about CVE-2019-10149, another RCE, which saw
exploit attempts within a week of public disclosure.

On September 28, Exim maintainers published an advance notice concerning a
new vulnerability in Exim 4.92 up to and including 4.92.2. From our analysis of
Shodan results, over 3.5 million systems may be affected.

Analysis

CVE-2019-16928 is a heap-based buffer overflow vulnerability due to a flaw in
string_vformat() found in string.c. As noted in the bug report, the flaw was a
simple coding error where the length of the string was not properly accounted
for, leading to a buffer overflow condition. The flaw can be exploited by an
unauthenticated remote attacker who could use a large crafted Extended HELO
(EHLO) string to crash the Exim process that receives the message. This could
potentially be further exploited to execute arbitrary code on the host. The flaw
was found internally by the QAX A-Team, who submitted the patch. However,
the bug is trivial to exploit, and it's likely attackers will begin actively probing for
and attacking vulnerable Exim MTA systems in the near future.

~ £ _« -

18

@technica

WhatsApp vulnerability
exploited to infect phones
with Israeli spyware

Attacks used app's call function. Targets didn't have
to answer to be infected.

DAN GOODIN - 5/13/2019, 10:00 PM

Attackers have been exploiting a vulnerability in WhatsApp that allowed them to infect phones with advanced spyware made by
Israeli developer NSO Group, the Financial Times reported on Monday, citing the company and a spyware technology dealer.

A representative of WhatsApp, which is used by 1.5 billion people, told Ars that company researchers discovered the vulnerability
earlier this month while they were making security improvements. CVE-2019-3568, as the vulnerability has been indexed, is a buffer
overflow vulnerability in the WhatsApp VOIP stack that allows remote code execution when specially crafted series of SRTCP
packets are sent to a target phone number, according to this advisory.

https://arstechnica.com/information-technology/2019/05/whatsapp-vulnerability-exploited-to-infect-phones-with-israeli-spyware/

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 19

2019 WhatsApp Buffer Overflow Vulnerability

* WhatsApp messaging app could install malware on Android, iOS,
Windows, & Tizen operating systems

An attacker did not have to get the user to do anything: the attacker just places a
WhatsApp voice call to the victim = zero-click attack

* This was a zero-day vulnerability
— Attackers found & exploited the bug before the company could patch it

* WhatsApp used by 1.5 billion people

— Vulnerability discovered in May 2019 while developers were making security
improvements

https://arstechnica.com/information-technology/2019/05/whatsapp-vulnerability-exploited-to-infect-phones-with-israeli-spyware/

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 20

I\/Iany, many more!

y a ca 6 Ov.
1. 0 4 30 R8000 before 1.0.4. 52 R7000P before 1.3.2. 124 R8000P before 1. 4 1. 50 RAX80 before 1.0.3. BB RSQUOP before 1 3. 2 124 R7900P before 1. 4 1 50 and RAX75 before 1.0.3.88.

CVE-2021-45525 Certain NETGEAR devices are affected by a buffer overflow by an authenticated user. This affects EX7000 before 1.0.1.80, R6400 before 1.0.1.50, R6400v2 before 1.0.4.118, R6700 before 1.0.2.8, R6700v3 before 1.0.4.118, R6900 before 1.0.2.8, R6900P before
1.3.2.124, R7000 before 1.0.9.88, R7000P before 1.3.2.124, R7900 before 1.0.3.18, R7900P before 1.4.1.50, R8000 before 1.0.4.46, R8000P before 1.4.1.50, RAX80 before 1.0.1.56, and WNR3500Lv2 before 1.2.0.62.

CVE-2021-45524 NETGEAR R8000 devices before 1.0.4.62 are affected by a buffer overflow by an authenticated user.
CVE-2021-45523 NETGEAR R7000 devices before 1.0.9.42 are affected by a buffer overflow by an authenticated user.
5417 AIDE before 0.17.4 allows local users to obtain root privileges via crafted file metadata (such as XFS extended attributes or tmpfs ACLs), because of a heap-based buffer overflow.

CVE-2021-45342 A buffer overflow vulnerability in CDataList of the jwwlib component of LibreCAD 2.2.0-rc3 and older allows an attacker to achieve Remote Code Execution using a crafted JWW document.

CVE-2021-45341 A buffer overflow vulnerability in CDataMoji of the jwwlib component of LibreCAD 2.2.0-rc3 and older allows an attacker to achieve Remote Code Execution using a crafted JWW document.

CVE-2021-45078 stab_xcoff_builtin_type in stabs.c in GNU Binutils through 2.37 allows attackers to cause a denial of service (heap-based buffer overflow) or possibly have unspecified other impact, as demonstrated by an out-of-bounds write. NOTE: this issue exists because of an incorrect
fix for CVE-2018-12699.

CVE-2021-44847 A stack-based buffer overflo ‘tackers to crash the process or
potentially execute arbitrar:

CVE-2021-44790 A carefully crafted reques aft one. This issue affects Apache
HTTP Server 2.4.51 and e

CVE-2021-44738 Buffer overflow vulnerabil

CVE-2021-44703 Acrobat Reader DC versio litrary code execution in the context
of the current user. Exploi

CVE-2021-44648 GNOME gdk-pixbuf 2.42.6
CVE-2021-44538 The olm_session_describe

522 reported buffer overflow vulnerabilities iccumants. The ovrton

content is partially control

CVE-2021-44435 A vulnerability has been ic J 6 2021 could leverage this vulnerability to
execute code in the conte, — F b 7 2022
an eb 7,

CVE-2021-44432 A vulnerability has been ic could leverage this vulnerability to
execute code in the conte
CVE-2021-44422 An Improper Input Validat heap-based buffer overflow. An

attacker can leverage this
CVE-2021-44352 A Stack-based Buffer Ove

CVE-2021-44165 A vulnerability has been ic < V2.41). The affected firmware
contains a buffer overflow

CVE-2021-44158 ASUS RT-AX56U Wi-Fi Route Jr disrupt service.

CVE-2021-44154 An issue was discovered in Repi. a buffer overflow.

CVE-2021-43983 WECON LeviStudioU Versions 2019-09-21 and prior are vulnerable to multiple stack-based buffer overflow instances while parsing project files, which may allow an attacker to execute arbitrary code.
CVE-2021-43982 Delta Electronics CNCSoft Versions 1.01.30 and prior are vulnerable to a stack-based buffer overflow, which may allow an attacker to execute arbitrary code.

CVE-2021-43637 Amazon WorkSpaces agent is affected by Buffer Overflow. IOCTL Handler 0x22001B in the Amazon WorkSpaces agent below v1.0.1.1537 allow local attackers to execute arbitrary code in kernel mode or cause a denial of service (memory corruption and OS crash) via
specially crafted I/O Request Packet.

CVE-2021-43618 GNU Multiple Precision Arithmetic Library (GMP) through 6.2.1 has an mpz/inp_raw.c integer overflow and resultant buffer overflow via crafted input, leading to a segmentation fault on 32-bit platforms.
CVE-2021-43579 A stack-based buffer overflow in image_load_bmp() in HTMLDOC <= 1.9.13 results in remote code execution if the victim converts an HTML document linking to a crafted BMP file.
CVE-2021-43573 A buffer overflow was discovered on Realtek RTL8195AM devices before 2.0.10. It exists in the client code when processing a malformed IE length of HT capability information in the Beacon and Association response frame.

CVE-2021-43556 FATEK WinProladder Versions 3.30_24518 and prior are vulnerable to a stack-based buffer overflow while processing project files, which may allow an attacker to execute arbitrary code.

CVE-2021-43518 Teeworlds up to and including 0.7.5 is vulnerable to Buffer Overflow. A map parser does not validate m_Channels value coming from a map file, leading to a buffer overflow. A malicious server may offer a specially crafted map that will overwrite client's stack causing
denial of service or code execution.

CVE-2021-43280 A stack-based buffer overflow vulnerability exists in the DWF file reading procedure in Open Design Alliance Drawings SDK before 2022.8. The issue q A q .
attacker can leverage this vulnerability to execute code in the context of the current process. https://CVe.mltre.Org/Cgl'bln/CVekey.Cg|?keyW0rd=bUffer+0Vel’ﬂOW

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 21

Buggy libraries can affect a lot of code bases

July 2017 - Devil's lvy
(CVE-2017-9765)

Millions of 0T devices are vulnerable to buffer
overflow attack

&9 July 18,2017 & Eslam Medhat @ 104Views @ 0Comments W% buffer overflow

- gsoap Open source tOO|klt A buffer overflow flaw has been found by security researchers (at the loT-focused

— Enables remote attacker to execute
arbitrary code

security firm Senrio) in an open-source software development library that is widely
used by major manufacturers of the Internet-of-Thing devices.

The buffer overflow vulnerability (CVE-2017-9765), which is called “Devil's lvy” enables a

— Discovered during the analySiS of an remote attacker to crash the SOAP (Simple Object Access Protocol) WebServices

internet-connected security camera

February 9, 2022

daemon and make it possible to execute arbitrary code on the affected devices.

SecurltyNews Cybersecurity News || News | ‘

Security researchef's discloses vulnerabili

TLS libraries and the downgrade Attack on'TES'1.3

By Natasha Mathur - February 11,2019-7:22am @ 1085 -0

https://latesthackingnews.com/2017/07/18/millions-of-iot-devices-are-vulnerable-to-buffer-overflow-attack/

CS 419 © 2022 Paul Krzyzanowski 22

The classic buffer

overflow bug

February 9, 2022

gets.c from OS X: © 1990,1992 The Regents of the University

of California.
gets (buf)
char *buf;

register char *s;
static int warned;

static char w[] = "warning: this program uses gets(),

which is unsafe.\r\n";

if ('warned) {

(void) write (STDERR FILENO, w, sizeof (w)

warned = 1;

}

for (s = buf; (c = getchar())
if (¢ == EOF)
if (s == buf)
return (NULL) ;
else
break;
else
*s++ = c;

'= '"\n';)

*s = 0;
return (buf) ;

CS 419 © 2022 Paul Krzyzanowski

23

char name[128]; /* user’s name */

printf ("enter your name: ") ;
if (gets(name) != NULL)

printf ("your name is \"%s\"\n", name);

The classic buffer

overflow bug

February 9, 2022

gets.c from OS X: © 1990,1992 The Regents of the University

of California.
gets (buf)
char *buf;

register char *s;
static int warned;

static char w[] = "warning: this program uses gets(),

which is unsafe.\r\n";

if ('warned) {

(void) write (STDERR FILENO, w, sizeof (w)

warned = 1;

}

for (s = buf; (c = getchar())
if (¢ == EOF)
if (s == buf)
return (NULL) ;
else
break;
else
*s++ = c;

'= '"\n';)

*s = 0;
return (buf) ;

CS 419 © 2022 Paul Krzyzanowski

25

gets.c from OS X: © 1990,1992 The Regents of the University
of California.

gets (buf)

char *buf;
register char *s;
static int warned;

(c = getchar()) '= '\n';) gets (),
if (¢ == EOF)
if (s == buf) N
return (NULL) ;
else
break;

else

S = U,
return (buf);

}

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 26

C++ too — and no warnings!

#include <iostream>

using namespace std;

int main()

{
char x[4] = "cat";
char y[4];
char z[4] = "dog";

cout << "Enter a word:";

cin >> y;

cout << "Read " << strlen(y) << " characters." << endl;
cout << "x: " << xX << endl;

cout << "y: " << y << endl;

cout << "z: " << z << endl;

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 27

C++ too — and no warnings!

#include <iostream>

using names

int main()
{
char x| . -
char y $g o cin cin.cpp

char z[Enter a word:abcdefg
Read 7 characters.

cout << x: efg

cin >>

cout << Y° abcdefg

cout << 2: dog

t < .
cout < The data in y overflowed to x

} x got corrupted

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 28

C++ too — and no warnings!

#include <iostream>

using names

int main()
{ $ g++ -o cin cin.cpp
ZiziitEnter a word:abcdefghijklmnopqrstuvwxyz0123456789

char z[Read 36 characters.
x: efghijklmnopqrstuvwxyz0123456789
cout << . gbcdefghijklmnopgrstuvwxyz0123456789

cin >>

cout << z: dog

cout << Bus error: 10

cout << With even more data,
cout << x got corrupted

AND the program crashed!

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 29

Buffer overflow examples

void test(void) {
char name[1l0];

strcpy(name, "krzyzanowski");

That’s easy to spot!

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 30

Another example

How about this?

char configfile[256];
char *base = getenv("BASEDIR");

if (base != NULL)

sprintf(configfile, "%$s/config.txt", base);
else {

fprintf(stderr, "BASEDIR not set\n");
}

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 31

Buffer overflow attacks

To exploit a buffer overflow

* Identify overflow vulnerability in a program
— Black box testing
* Trial and error
 Fuzzing tools (more on that ...)
— Inspection
 Study the source
 Trace program execution

* Understand where the buffer is in memory and whether there is
potential for corrupting surrounding data

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 32

What’s the harm??

Execute arbitrary code, such as starting a shell
Code injection, stack smashing

— Code runs with the privileges of the program
* If the program is setuid root then you have root privileges
* If the program is on a server, you can run code on that server

» Even if you cannot execute code...
— You may crash the program or change how it behaves
— Modify data
— Denial of service attack

- Sometimes the crashed code can leave a core dump
— You can access that and grab data the program had in memory

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 33

Taking advantage of unchecked bounds

#include <stdio.h>

#include <strings.h> s
#include <stdlib.h>

int

. /buf
enter password: abcdefghijklmnop
authorized: running with root privileges...

main(int argc, char **argv)

{

}

February 9, 2022

char pass[5]; k\\--\\\

int correct = 0; Run on my Raspberry Pi
. Raspbian GNU/Linux 10
printf("enter password: ");
gets (pass); 5.10.63-v71+
if (strcmp(pass, "test") == 0) { Or my Mac Mini M1 running macOS 12.2

printf("password is correct\n");
correct = 1;

Or my Intel i7 iMac running macOS 12.2
}

if (correct) {
printf ("authorized: running with root privileges...\n");
exit(0);

}

else
printf("sorry - exiting\n");

exit(1l);

CS 419 © 2022 Paul Krzyzanowski 34

It’s a bounds checking problem

« Cand C++
— Allow direct access to memory
— Do not check array bounds

— Functions often do not even know array bounds
* They just get passed a pointer to the start of an array

 This is not a problem with strongly typed languages
— Java, C#, Python, etc. check sizes of structures

* But C is in the top 4-5 of popular programming languages
— #1 for system programming & embedded systems
— And most compilers, interpreters, and libraries are written in C

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 35

Anatomy of overtlows

zzzzzzzzzzzzzz

Linux process memory map”*

oS High memory
Command-line args & environment Loaded by execve
variables
0xc0000000
Stack
““““““““ I T T T T T 77777777 "|Top of stack (it grows down)
Shared libraries
0x40000000
--------------- t —=------------l«< brk
Heap
Uninitialized data (bss)
Initialized data
Program (text)
0x08048000 “Notto scale
unused

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 37

Note: rbp & rsp are used in 64-bit processors

ebp & esp are used in 32-bit processors

High memory
Previous return address

\ 4

Previous frame pointer

param_3

param_2

param_1

Return address

Saved rbp (frame pointer)

Local variable a

Local variable b

Local variable c

Low memory

February 9, 2022

func(param_1, param 2, param_3)

Calling function:

func:

«<—— rbp
(current frame pointer)

+«—— rsp
(current stack pointer)

CS 419 © 2022 Paul Krzyzanowski

pushl param 3
pushl param 2
pushl param 1
call func

pushl rbp

movl %rsp, %rbp
subl $20, %rsp
leave

ret

38

Causing overflow

Overflow can occur when programs do not validate the length of
data being written to a buffer

This could be in your code or one of several “unsafe” libraries
— strcpy(char *dest, const char *src);
— strcat(char *dest, const char *src);
— gets(char *s);
— scanf(const char *format, ..)
— Ofthers...

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 39

Overflowing the buffer

High memory void func(char *s) {
Return address char buf[128];
> Previous frame pointer strcpy(buf, s);
/* oo %/
parameter (s) }

Return address

Saved rbp (frame pointer) | +—— rbp (current frame pointer)

char bu£[128] «—— rsp (current stack pointer)

Low memory

What if strlen(s) is >127 bytes?

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 40

Overflowing the buffer

High memory void func(char *s) {
Return address char buf[128];
> Previous frame pointer strcpy(buf, s);
/* oo %/
parameter (s) }

Return address

Saved rbp (frame pointer) |¢— bp (current frame pointer)

char buf[128] <« rsp (current stack pointer)

Low memory

What if strlen(s) is >127 bytes?
You overwrite the saved rbp and then the return address

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 41

Overwriting the return address

* If we overwrite the return address
— We change what the program executes when it returns from the function

* “Benign” overflow
— Overflow with garbage data
— Chances are that the return address will be invalid
— Program will die with a SEGFAULT
— Availability attack

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 42

Programming at the machine level

 High level languages (even C) constrain you in
— Access to variables (local vs. global)

— Control flows in predictable ways
* Loops, function entry/exit, exceptions

- At the machine code level
— No restriction on where you can jump
« Jump to the middle of a function ... or to the middle of a C statement

* Returns will go to whatever address is on the stack
« Unused code can be executed (e.g., library functions you don’t use)

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 43

Subverting control flow

Malicious overflow
— Fill the buffer with malicious code
— Overflow to overwrite saved $rbp

— Then overwrite saved the $rsp .
) High memory]
(return address) with the address of Previous retur address
the malicious code in the buffer Previous frame pointer

params

Overwritten return
address

char buf[128]

Overwritten area

MALICIOUS CODE

A

Low memory

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 44

Subverting control flow: more code

If you want to inject a lot of code

Just go further down the stack (into higher
memory

— Initial parts of the buffer will be garbage High memory
data ... we just need to fill the buffer

— Then we have the new return address
— Then we have malicious code

— The return address points to the malicious
code

Overwritten area

Start of buf[128] \
Low memory

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

T

MALICIOUS CODE

... still part of the
overflow of buf[128]

Previous retpirn address

Previous fiw pointer

params

Overwritten return
address

A

char buf[128]

Junk ... we don’t care what
goes here — we just need to
overflow this buffer

45

Address Uncertainty

What if we’re not sure what the exact
address of our injected code is?

NOP slide = NOP sled = landing zone
— Pre-pad the code with a lots of NOP
instructions

« NOP
* moving a register to itself

* adding O
* etc.

— Set the return address on the stack to any
address within the landing zone

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

High memory

Overwritten area

Low memory

MALICIOUS CODE
(still part of the
overflow of buf)

NOP - NOP - NOP - NOP
NOP - NOP - NOP - NOP
NOP - NOP - NOP - NOP

Overwritten return
address

A

OVERFLOW JUNK

char buf[128]

OVERFLOW JUNK

46

Off-by-one overflows

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

a7

Safe functions aren’t always safe

» Safe counterparts require a count
— Strepy — strncpy
— Strcat — strncat

— sprintf — snprintf for (i=0; 1i<=512; i++)
buf[i] = stuff[i];

char buf[512];
int 1i;

* But programmers can miscount!

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 48

Off-by-one errors

 We can’t overwrite the return address

* But we can overwrite one byte of the saved frame pointer
— Least significant byte on Intel/ARM systems

« Little-endian architecture High memory
Return address
* What'’s the harm of overwriting > Previous frame pointer
the frame pointer? params

Return address

Saved rbp (frame pointer)

char buf[128]

MALICIOUS CODE

Low memory

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 49

Off-by-one errors: frame pointer mangling

At the end of a function:

— The compiler resets the stack pointer (%rsp) to the base of the frame (%rbp):

mov 3rsp, 3%rbp

— and restores the saved frame pointer (which we corrupted) from the top of the stack:
pop %rbp pops corrupted frame pointer into rbp, the frame pointer

ret
The program now has the wrong frame pointer when the function returns

The function returns normally —
we could not overwrite the return address

BUT ... when the function that called it tries to return, it will update
the stack pointer to what it thinks was the valid base pointer and
return there:

mov %rsp, %rbp rbp is our corrupted one
pop %rbp we don’t care about the base pointer
ret return pops the stack from our buffer, so we can jump anywhere

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

High memory

Return address

Previous frame pointer

params

Return address

Saved rbp (frame pointer)

Malicious return address

A 4

Junk frame pointer

char buf[128]

MALICIOUS CODE

Low memory

50

Off-by-one errors: frame pointer mangling

» Stuff the buffer with
— Malicious code, pointed to by "saved” %rip

— “saved” %rbp (can be garbage) High memory
— “saved” %rip (return address) Return address
— Malicious code, pointed to by "saved” %rip M Previous frame pointer

params

* When the function’s calling function returns

— It will return to the “saved” %rip, which
points to malicious code in the buffer

Return address

Saved rbp (frame pointer)

Malicious return address

A 4

Junk frame pointer

char buf[128]

MALICIOUS CODE

Low memory

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 51

Heap & text overflows

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

52

Linux process memory map

oS High memory

- Statically allocated variables &
dynamically allocated memory

Command-line args & environment

variables OXC0000000 (malloc) are not on the stack
St}"" _____________ « Heap data & static data do not
t contain return addresses
Shared libraries — No ability to overwrite a return
0x40000000 address
--------------- t-------------- <+ brk

Are we safe?

Uninitialized data (bss)

Initialized data

Loaded by execve

Program (text)
0x08048000

unused

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 53

Memory overflow

The program| #include <string.h>

4 D #include <stdlib.h>
#include <stdio.h>
We may be able to overflow a
buffer and overwrite other char a[15];
variables in higher memory char b[15];
)] int
For example, overwrite a file main(int argc, char **argv)
name {)
strcpy (b, "abcdefghijklmnopgrstuvwxyz");
- J printf("a=%s\n", a);
printf ("b=%s\n", b);
exit(0);
}

The output | a=grstuvwxyz
(Linux 4.4.0-59, gcc 5.4.0) | b=abcdefghijklmnopgrstuvwxyz

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 54

Memory overflow — flename example

The program #include <string.h>

; N #include <stdlib.h>

#include <stdio.h>

i char afile[20];)

We ovem_’mte the f_",e char mybuf[15]; f) mybuf can overflow into afile
name afile by writing
too much into mybu f! int main(int argc, char **argv)

{

L) strncpy(afile, "/etc/secret.txt", 20);
printf(”Planning to write to %s\n", afile);
strcpy(mybuf, "abcdefghijklmnop/home/paul/writehere.txt");
printf("About to open afile=%s\n", afile);
exit(0);

}

The output | Planning to write to /etc/secret.txt
(Linux 5.10.63, gcc 8.3.0) | About to open afile=/home/paul/writehere.txt

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 55

Overwriting variables: changing control flow

* Even if a buffer overflow does not touch the stack, it can modify
global or static variables

° Example: ?'{_nt callback(const char* msqg)
— Overwrite a function pointer printf(“callback called: %s\n”, msg);
}
— Function pointers are often int main(int argc, char **argv)

used in callbacks {

static int (*fp)(const char *msqg);
static char buffer[16];

fp = (int(*)(const char *msg))callback;
strcpy(buffer, argv[1l]);
(int) (*fp) (argv[2]); // call the callback

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 56

The exploit

» The program takes the first two arguments from the command line

* It copies argv|[1] into a buffer with no bounds checking

int callback(const char* msqg)

* It then calls the callback, {
passing it the message printf(“callback called: %s\n”, msg);
}
from the 2nd argument int main(int argc, char **argv)
{
The exploit static int (*fp)(const char *msqg);

static char buffer[16];
— Overflow the buffer

. . fp = (int(*)(const char *msg))callback;
— The overflow bytes will contain the stropy (buffer, argv(l]);:
address you really want to call (int) (*fp) (argv([2]); // call the callback

* They’re strings, so bytes with O in Y
them will not work ... making this a
more difficult attack

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 57

printf attacks

February 9, 2022

CS 419 © 2022 Paul Krzyzanowski

58

printf and its variants

Standard C library functions for formatted output
— printf: print to the standard output
— wprintf: wide character version of printf
— fprintf, wfprintf: print formatted data to a FILE stream
— sprintf, swprintf: print formatted data to a memory location
— vprintf, vwprintf,vfprintf, vwfprintf :
print formatted data containing a pointer to argument list

Usage
printf(format string, arguments ...)
printf (“The number %d in decimal is %x in hexadecimal\n”, n, n);

printf(“my name is %s\n”, name);

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 59

Bad usage of printf

Programs often make mistakes with printf

Valid:
printf(“hello, world!\n")

Also accepted ... but not right
char *message = “hello, world\n”);

printf (message);

This works but/exposes the chance that message will be changed

This should be a format string

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 60

Dumping memory with printf

S ./tt hello
hello

$./ttt "hey: %0121x"
hey: 7fffelda287f

printf does not know how many arguments it has.
It deduces that from the format string.

If you don’t give it enough, it keeps reading from the
stack

We can dump arbitrary memory by walking up the stack

S ./tt %$08x.%08x%x.%08x%x.%08x.%08x%
6d10c308.6d10c320.85d636£f0.a1b80d80.a1b80d80

#include <stdio.h>
#include <string.h>

int
show(char #*buf)

{
printf (buf); putchar('\n');
return 0;

}

int
main(int argc, char **argv)
{
if (argc == 2) {
show(argv[l]);
}

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 61

Getting into trouble with printf

Have you ever used ¢n ?

Format specifier that will store into memory the number of bytes written so far
int printbytes;
printf("paul%n says hi\n", &printbytes);
Will print
paul says hi

and will store the number 4 (which is the value of strlen(“paul”))into
the variable printbytes

If we combine this with the ability to change the format specifier, we can write
to other memory locations

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 62

Bad usage of printt: #include <stdio.h>

#include <string.h>

Buffer int
— show(char #*buf)
Pointer to buffer {
3 printf (buf);
— O
Return gz{:Iress 1S putchar('\n');
Saved frame pointer return 0;
/ —
Pointer to buffer (printf format) }
S
Return address — S int
Q 1 1 * %
Saved frame pointer Taln(lnt arge, char argv)
printf treats this as the 1st parameter after the char buf[256];
format string. _
« We can skip ints with formatting strings such it (arge == 2) {
o strncpy(buf, argv[l], 255);
as %x _ show (buf);
* The buffer can contain the address that we }
want to overwrite }

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 63

printf attacks: %n

What good is %n when it’s just # of bytes written?
— You can specify an arbitrary number of bytes in the format string

printf(“%$.622404x%.622400x%n"
Will write the value 622404+622400 = 1244804 = Ox12fe84

What happens?

— %.622404x = write at least 622404 characters for this value

— Each occurrance of $x (or %d, %b, ...) will go down the stack by one parameter (usually 8
bytes). We don‘t care what gets printed

— The %x directives enabled us to get to the place on the stack where we want to change a
value

— %n will write that value, which is the sum of all the bytes that were written

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 64

Defending against hijacking attacks

zzzzzzzzzzzzzz

» Audit software
» Check for buffer lengths whenever adding to a buffer

» Search for unsafe functions
— Use nm and grep to look for function names

 Use automated tools

— Clockwork, CodeSonar, Coverity, Parasoft, PolySpace, Checkmarx, PREfix,
PVS-Studio, PCPCheck, Visual Studio

* Most compilers and/or linkers now warn against bad usage

tt.c:7:2: warning: format not a string literal and no format arguments [-Wformat-security]

zz.c: (.text+0x65): warning: the 'gets' function is dangerous and should not be used.

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 66

Fix bugs: Fuzzing

- Generate semi-random data as input to detect bugs
— Locating input validation & buffer overflow problems
— Enter unexpected input
— See if the program crashes

» Enter long strings with searchable patterns

- If the app crashes
— Search the core dump for the fuzz pattern to find where it died

« Automated fuzzer tools help with this
— E.g., libFuzzer and AFL in G/C++; cargo-fuzz in Rust

* Or ... try to construct exploits using gdb

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 67

* Fuzzing available in Go 1.18 (released Feb 2022)

» Goal
— Make fuzz testing as easy as benchmarking or unit testing
— No need for custom tools or separate files

» Seed corpus: user-specified set of inputs to a fuzz test
— Fuzzing engine will mutate these inputs to discover new code coverage

https://go.googlesource.com/proposal/+/master/design/draft-fuzzing.md

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 68

Don’t use C or C++

* Most other languages feature
— Run-time bounds checking
— Parameter count checking
— Disallow reading from or writing to arbitrary memory locations

* Hard to avoid in many cases

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 69

Specify & test code

* If it’s in the specs, it is more likely to be coded & tested

 Document acceptance criteria
— “File names longer than 1024 bytes must be rejected”
— “User names longer than 32 bytes must be rejected”

» Use safe functions that check allow you to specify buffer limits

* Ensure consistent checks to the criteria across entire source

— Example, you might #define limits in a header file but some files might use a
mismatched number.

* Don't allow user-generated format strings and check results from printf

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 70

Safer libraries

» Compilers warn against unsafe strcpy or printf
* Ideally, fix your code!

« Sometimes you can’t recompile (e.g., you lost the source)

* libsafe
— Dynamically loaded library
— Intercepts calls to unsafe functions

— Validates that there is sufficient space in the current stack frame
(framepointer — destination) > strlen(src)

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 71

Dealing with buffer overflows: No Execute (NX)

Data Execution Prevention (DEP)
— Disallow code execution in data areas — on the stack or heap

— Set MMU per-page execute permissions to no-execute
— Intel and AMD added this support in 2004

— Examples
» Microsoft DEP (Data Execution Prevention) (since Windows XP SP2)

 Linux PaX patches
« OS X=10.5

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

72

No Execute — not a complete solution

No Execute Doesn’t solve all problems
— Some applications need an executable stack (LISP interpreters)

— Some applications need an executable heap

 code loading/patching
» JIT compilers

— Does not protect against heap & function pointer overflows
— Does not protect against print £ problems

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

73

Return-to-libc

 Allows bypassing need for non-executable memory
— With DEP, we can still corrupt the stack ... just not execute code from it

* No need for injected code
* Instead, reuse functionality within the exploited app

« Use a buffer overflow attack to create a fake frame on the stack
— Transfer program execution to the start of a library function
— libc = standard C library ... every program uses it!
— Most common function to exploit: system
* Runs the shell

* New frame in the buffer contains a pointer to the command to run (which is also in the buffer)
- E.g., system(“/bin/sh")

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 74

Return Oriented Programming (ROP)

» Overwrite return address with address of a library function

— Does not have to be the start of the library routine
* Use “borrowed chunks” from a various libraries

— When the library gets to RET, that location is on the stack, under the attacker’s control

« Chain together sequences ending in RET
— Build together “gadgets” for arbitrary computation

— Buffer overflow contains a sequence of addresses that direct each successive RET
instruction

* It is possible for an attacker to use ROP to execute arbitrary algorithms
without injecting new code into an application
— Removing dangerous functions, such as system, is ineffective

— Make attacking easier: use a compiler that combines gadgets!
* Example: ROPC - a Turing complete compiler, https://github.com/pakt/ropc

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 75

Dealing with buffer overflows & ROP: ASLR

» Addresses of everything were well known

— Dynamically-loaded libraries used to be loaded in the same place each time, as was the

stack & memory-mapped files

— Well-known locations make them branch targets in a buffer overflow attack

» Address Space Layout Randomization (ASLR)
— Position stack and memory-mapped files to random locations

— Position libraries at random locations

* Libraries must be compiled to produce position independent code

— Implemented in

* OpenBSD, Windows =Vista, Windows Server >2008, Linux =2.6.15, macOS, Android =4.1, iOS >4.3

— But ... not all libraries (modules) can use ASLR

* And it makes debugging difficult

February 9, 2022

CS 419 © 2022 Paul Krzyzanowski

76

Address Space Layout Randomization

* Entropy
— How random is the placement of memory regions?

* Examples

— Linux Exec Shield patch
* 19 bits of stack entropy, 16-byte alignment > 500K positions
« Kernel ASLR added in 3.14 (2014)

— Windows 7

* 8 bits of randomness for DLLs
— Aligned to 64K page in a 16MB region: 256 choices

— Windows 8
» 24 bits for randomness on 64-bit processors: >16M choices

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 77

Dealing with buffer overflows: Canaries

Stack canaries
— Place a random integer before the return address on the stack

— Before a return, check that the integer is there and not overwritten: a buffer
overflow attack will likely overwrite it

Return addr
a
b
s[9]
t[7]

int a, b=999;
char s[5], t[7];

MAMMNNN
memory at risk

gets(s);

no canary

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 78

Dealing with buffer overflows: Canaries

Stack canaries
— Place a random integer before the return address on the stack

— Before a return, check that the integer is there and not overwritten: a buffer

overflow attack will likely overwrite it

int a,

char s[5],

b=999;
t[7];

gets(s);

February 9, 2022

Stack

parameters

return addr

saved frame pointer

a

b

s[5]

7]

MM

no canary

CS 419 © 2022 Paul Krzyzanowski

memory at risk

Stack

parameters

return addr

saved frame pointer

CANARY

a

b

NN

s[5]

t[7]

with canary

at risk

Refining Stack Canaries: ProPolice

IBM’s ProPolice gcc patches

— Allocate arrays into higher memory in the stack

— Ensures that a buffer overflow attack will not clobber non-array variables

— Increases likelihood that the overflow won't attack the logic of the current function

parameters parameters
return addr return addr
saved frame pointer saved frame pointer 7
d fi point d fi point
in = ;
t a, b=999; N CANARY % N
char s[5], t[7]; \ / Xz
s[s] N Yr 7] 7.
gets(s); <
t7] 1 | a
b
no canary with canary

February 9, 2022

CS 419 © 2022 Paul Krzyzanowski

Stack canaries

* Again, not foolproof
* Heap-based attacks are still possible

* Performance impact

— Need to generate a canary on entry to a function
and check canary prior to a return

— Minimal degradation ~8% for apache web server

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 81

Intel CET: Control-Flow Enforcement Technology

Developed by Intel & Microsoft to thwart ROP attacks
— Available with the Tiger Lake microarchitecture (mid-2020)

Two mechanisms
1. Shadow stack

— Secondary stack
* Only stores return addresses
« MMU attribute disallows use of regular store instructions to modify it

— Stack data overflows cannot touch the shadow stack — cannot change control flow

2. Indirect branch tracking

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 82

Intel CET: Control-Flow Enforcement Technology

Indirect Branch Tracking
— Restrict a program’s ability to use jump tables

— Jump table = table of memory locations the program can branch
* Used for switch statements & various forms of lookup tables

— Jump-Oriented Programming (JOP) and Call Oriented Programming (COP)
» Technigues where attackers abuse JMP or CALL instructions
* Like Return-Oriented Programming but use gadgets that end with indirect branches

— New ENDBRANCH (ENDBRG4) instruction allows a programmer to specify valid targets for
indirect jumps
« If you take an indirect jump, it has to go to an ENDBRANCH instruction
 If the jump goes anywhere else, it will be treated as an invalid branch and generate a fault

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 83

Heap attacks — pointer protection

* Encrypt pointers (especially function pointers)
— Example: XOR with a stored random value
— Any attempt to modify them will result in invalid addresses
— XOR with the same stored value to restore original value

* Degrades performance when function pointers are used

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 84

Hardware Attacks: Example - Rowhammer

DDR4 memory protections are broken wide open @tECh”ica
by new Rowhammer technique

Researchers build "fuzzer" that supercharges potentially serious bitflipping exploits.
Dan Goodin ¢ 11/15/2021

Rowhammer exploits that allow unprivileged attackers to change or corrupt data stored in vulnerable
memory chips are now possible on virtually all DDR4 modules due to a new approach that neuters
defenses chip manufacturers added to make their wares more resistant to such attacks.

Rowhammer attacks work by accessing—or hammering—physical rows inside vulnerable chips
millions of times per second in ways that cause bits in neighboring rows to flip, meaning 1s turn to Os
and vice versa. Researchers have shown the attacks can be used to give untrusted applications nearly
unfettered system privileges, bypass security sandboxes designed to keep malicious code from
accessing sensitive operating system resources, and root or infect Android devices, among other

things.

https://arstechnica.com/gadgets/2021/11/ddr4-memory-is-even-more-susceptible-to-rowhammer-attacks-than-anyone-thought/

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 85

Hardware Attacks: Example - Rowhammer

* New attack technique discovered
— Uses non-uniform patterns that access two or more rows with different frequencies
— Bypasses all defenses built into memory hardware
— 80% of devices can be hacked this way
— Cannot be patched!

- Sample attacks
— Gain unrestricted access to all physical memory by changing bits in the page table entry
— Give untrusted applications root privileges
— Extract encryption key from memory

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 86

The end

February 9, 2022

CS 419 © 2022 Paul Krzyzanowski

87

The End

February 9, 2022

CS 419 © 2022 Paul Krzyzanowski

93

Top Software Weaknesses for 2020

MITRE, a non-profit organization that manages federally-funded research & development centers,
publishes a list of top security weaknesses

1 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') 46.81
2 Out-of-bounds Write 46.17
3 Improper Input Validation 33.47
4 Out-of-bounds Read 26.50
5 Improper Restriction of Operations within the Bounds of a Memory Buffer 23.73
6 SQL Injection 20.69
7 Exposure of Sensitive Information to an Unauthorized Actor 19.16
8 Use After Free 18.87
9 Cross-Site Request Forgery (CSRF) 17.29
10 OS Command injection 16.44

https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 94

