
CS 419: Computer Security

Paul Krzyzanowski

Week 3: Code Injection

© 2022 Paul Krzyzanowski. No part of this
content, may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 2

Program Hijacking
Part 1

Hijacking & Injection
Hijacking
Getting software to do something different from what the user or developer expected

• Session hijacking
– Take over someone’s communication session (typically from a web browser)
• Usually involves stealing a session token that identifies the user and authorizes access

• Program hijacking
– Get a program to execute unintended operations
– Command injection
• Send commands to a program that are then executed by the system shell
• Includes SQL injection – send database commands

– Code injection
• Inject code into a program that is then executed by the application

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 3

Examples of Hijacking
• Session hijacking
– Snoop on a communication session to get authentication info and take control of the session

• Code injection
– Overflow an input buffer and cause new code to run
– Provide JavaScript as input that will later get executed (Cross-site scripting)
– Library injection: load different dynamic libraries that cause different versions of code run

• Command injection
– Provide input that will get interpreted and run as a system command
– Change search paths to run different programs

• Other forms
– Redirect web browser to a malicious site
– Change DNS (IP address lookup) results
– Change search engine

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 4

Security-Sensitive Programs
• Control hijacking isn’t interesting for regular programs on your system
– You might as well just run commands from the shell

• It is interesting if the program
– Has elevated privileges (setuid), especially runs as root
– Runs on a system you don’t have access to (most servers)

Privileged programs are more sensitive & more useful targets

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 5

Bugs and mistakes
• Most attacks are due to
– Social engineering: getting a legitimate user to do something
– Or bugs: using a program in a way it was not intended
• Bugs include buggy security policies

• Attacked system may be further weakened because of poor access
control rules
– Violate Principle of Least Privilege

• Cryptography won’t help us!
– And cryptographic software can also be buggy

6February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Unchecked Assumptions
• Unchecked assumptions can lead to vulnerabilities
– Vulnerability:weakness that can be exploited to perform

unauthorized actions

• Attack
– Discover assumptions
– Craft an exploit to render them invalid … and run the exploit

• Four common assumptions
1. Buffer is large enough for the data
2. Integer overflow doesn’t exist
3. User input will never be processed as a command
4. A file is in a proper format

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 7

Buffer Overflow

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 8

What is a buffer overflow?
Programming error that allows more data to be stored in an array than
there is space

• Buffer = stack, heap, or static data

• Overflow means adjacent memory will be overwritten
– Program data can be modified
– New code can be injected
– Unexpected transfer of control can be launched

9February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Buffer overflows
• Buffer overflows used to be responsible for up to ~50% of

vulnerabilities

• We know how to defend ourselves but
– Average time to patch a bug >> 1 year
– People delay updating systems … or refuse to
– Embedded systems often never get patched
• Routers, cable modems, set-top boxes, access points, IP phones, and security cameras

– Insecure access rights often help with gaining access or more privileges
– We will continue to write buggy code!

10February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Buffer overflows … still going strong
Nov. 19, 2021: NETGEAR meltdown
– Affects 61 different devices
– Allows attackers to execute arbitrary code on routers
– Authentication is not required for exploit
– Bug in UPnP service on TCP port 5000
• When parsing the uuid request header, the process does

not properly validate the length of user-supplied data prior
to copying it to a fixed-length stack-based buffer.

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 11

https://securityboulevard.com/2021/11/netgear-meltdown-cve-2021-34991-pre-authentication-buffer-overflow/

Buffer overflows … still going strong
Dec. 9, 2021: SonicWall
– Affects SMA (Secure Mobile Access) 100 Series
– Multiple heap-based and stack-based buffer

overflows
– Can be accessed by unauthenticated users
– Bug in fileexplorer component
• Unchecked use of strcpy with a fixed size buffer
• Assumes username and password will each be <128

bytes
• Same bug with the domain name

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 12

https://research.nccgroup.com/2021/12/09/technical-advisory-sonicwall-sma-100-series-multiple-unauthenticated-heap-based-and-stack-based-buffer-overflow-cve-2021-20045/

Buffer overflows … still going strong
Feb. 2, 2021: Linux sudo
– Heap-based buffer overflow vulnerability
– An attacker could exploit this vulnerability to

take control of an affected system.

– Off-by-one error
• Can result in a heap-based buffer overflow,

which allows privilege escalation to root via
"sudoedit -s" and a command-line
argument that ends with a single backslash
character.

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 13

https://www.cisa.gov/uscert/ncas/current-activity/2021/02/02/sudo-heap-based-buffer-overflow-vulnerability-cve-2021-3156

Buffer overflows … still going strong
Feb. 5, 2021: Google Chrome
– Buffer overflow vulnerability in V8, Google

Chrome’s open-source JavaScript and
WebAssembly engine

– Exploits in the wild have been observed
– Allows remote attacker to exploit heap corruption

via a crafted HTML page
– Affects Microsoft Edge (Chromium based)

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 14

https://www.tenable.com/blog/cve-2021-21148-google-chrome-heap-buffer-overflow-vulnerability-exploited-in-the-wild

Buffer overflows … still going strong
July 28, 2020 – SIGRed vulnerability
– Exploits buffer overflow in Windows DNS Server

processing of SIG records
– Allows an attacker to create a denial-of-service

attack (& maybe get admin access)
– Bug existed for 17 years – discovered in 2020!
• A function expects 16-bit integers to be passed to it
• If they are not the proper size, it will overflow other

integers
• Attacker needs to create a DNS response that contains a

SIG record > 64KB

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 15

https://www.assurainc.com/a-vulnerability-called-sigred-cve-2020-1350-exploits-a-buffer-overflow-within-the-way-that-windows-dns-servers-process-sig-resource-record-types/amp-on/

Another 17 year-old bug
March 4, 2020: Point-to-Point Protocol
Daemon
– pppd is used for layer 2 (data link) services that

include DSL and VPNs
– Bug existed for 17 years – discovered in 2020!
• Attacker creates a specially-crafted Extensible

Authentication Protocol (EAP) message
• Incorrect bounds check allows copying an arbitrary

length of data

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 16

https://www.tenable.com/blog/cve-2020-8597-buffer-overflow-vulnerability-in-point-to-point-protocol-daemon-pppd

GRUB2 Bootloader
July 29, 2020: GRUB2 bootloader
– Used by most Linux systems and many hypervisors

and Windows systems that use Secure Boot with the
standard Microsoft Third Party UEFI Certificate
Authority

– Vulnerability allows attackers to gain arbitrary code
execution during the boot process – even when
Secure Boot is enabled

– Attacker needs to modify the GRUB2 config file
• But this allows the attack to persist and launch new

attacks even before the operating system boots
– GRUB2 checks a buffer size for a token
• But does not quit if the token is too large

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 17

https://eclypsium.com/wp-content/uploads/2020/08/Theres-a-Hole-in-the-Boot.pdf

Exim Mail Server Vulnerability
September 28, 2019: Exim server
– Heap-based buffer overflow vulnerability in

Exim email
– Exim mail transfer agent used on 5 million

systems
– Remote code execution possible because of

a bug in string_vformat() found in
string.c

– Length of the string was not properly
accounted for

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 18

19

https://arstechnica.com/information-technology/2019/05/whatsapp-vulnerability-exploited-to-infect-phones-with-israeli-spyware/

WhatsApp vulnerability
exploited to infect phones
with Israeli spyware
Attacks used app's call function. Targets didn't have
to answer to be infected.
DAN GOODIN - 5/13/2019, 10:00 PM

Attackers have been exploiting a vulnerability in WhatsApp that allowed them to infect phones with advanced spyware made by
Israeli developer NSO Group, the Financial Times reported on Monday, citing the company and a spyware technology dealer.

A representative of WhatsApp, which is used by 1.5 billion people, told Ars that company researchers discovered the vulnerability
earlier this month while they were making security improvements. CVE-2019-3568, as the vulnerability has been indexed, is a buffer
overflow vulnerability in the WhatsApp VOIP stack that allows remote code execution when specially crafted series of SRTCP
packets are sent to a target phone number, according to this advisory.

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

2019 WhatsApp Buffer Overflow Vulnerability
• WhatsApp messaging app could install malware on Android, iOS,

Windows, & Tizen operating systems
An attacker did not have to get the user to do anything: the attacker just places a
WhatsApp voice call to the victim ⇒ zero-click attack

• This was a zero-day vulnerability
– Attackers found & exploited the bug before the company could patch it

• WhatsApp used by 1.5 billion people
– Vulnerability discovered in May 2019 while developers were making security

improvements

20

https://arstechnica.com/information-technology/2019/05/whatsapp-vulnerability-exploited-to-infect-phones-with-israeli-spyware/

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Many, many more!

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 21

522 reported buffer overflow vulnerabilities
Jan 6 2021 – Feb 7, 2022

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer+overflow

Buggy libraries can affect a lot of code bases

July 2017 – Devil's Ivy
(CVE-2017-9765)
– gsoap open source toolkit
– Enables remote attacker to execute

arbitrary code
– Discovered during the analysis of an

internet-connected security camera

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 22

https://latesthackingnews.com/2017/07/18/millions-of-iot-devices-are-vulnerable-to-buffer-overflow-attack/

The classic buffer
overflow bug

gets.c from OS X: © 1990,1992 The Regents of the University
of California.

gets(buf)
char *buf;

register char *s;
static int warned;
static char w[] = "warning: this program uses gets(),
which is unsafe.\r\n";

if (!warned) {
(void) write(STDERR_FILENO, w, sizeof(w) - 1);
warned = 1;

}
for (s = buf; (c = getchar()) != '\n';)

if (c == EOF)
if (s == buf)

return (NULL);
else

break;
else

*s++ = c;
*s = 0;
return (buf);

}

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 23

The classic buffer
overflow bug

gets.c from OS X: © 1990,1992 The Regents of the University
of California.

gets(buf)
char *buf;

register char *s;
static int warned;
static char w[] = "warning: this program uses gets(),
which is unsafe.\r\n";

if (!warned) {
(void) write(STDERR_FILENO, w, sizeof(w) - 1);
warned = 1;

}
for (s = buf; (c = getchar()) != '\n';)

if (c == EOF)
if (s == buf)

return (NULL);
else

break;
else

*s++ = c;
*s = 0;
return (buf);

}

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 24

for (s = buf; (c = getchar()) != '\n';)
if (c == EOF)

if (s == buf)
return (NULL);

else
break;

else
*s++ = c;

...
char name[128]; /* user’s name */
...
printf("enter your name: ");
if (gets(name) != NULL)
printf("your name is \"%s\"\n", name);

The classic buffer
overflow bug

gets.c from OS X: © 1990,1992 The Regents of the University
of California.

gets(buf)
char *buf;

register char *s;
static int warned;
static char w[] = "warning: this program uses gets(),
which is unsafe.\r\n";

if (!warned) {
(void) write(STDERR_FILENO, w, sizeof(w) - 1);
warned = 1;

}
for (s = buf; (c = getchar()) != '\n';)

if (c == EOF)
if (s == buf)

return (NULL);
else

break;
else

*s++ = c;
*s = 0;
return (buf);

}

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 25

The classic buffer
overflow bug

gets.c from OS X: © 1990,1992 The Regents of the University
of California.

gets(buf)
char *buf;

register char *s;
static int warned;
static char w[] = "warning: this program uses gets(),
which is unsafe.\r\n";

if (!warned) {
(void) write(STDERR_FILENO, w, sizeof(w) - 1);
warned = 1;

}
for (s = buf; (c = getchar()) != '\n';)

if (c == EOF)
if (s == buf)

return (NULL);
else

break;
else

*s++ = c;
*s = 0;
return (buf);

}

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 26

for (s = buf; (c = getchar()) != '\n';)
if (c == EOF)

if (s == buf)
return (NULL);

else
break;

else
*s++ = c;

for (s = buf; (c = getchar()) != '\n';)
if (c == EOF)

if (s == buf)
return (NULL);

else
break;

else
*s++ = c;

C++ too – and no warnings!

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 27

#include <iostream>

using namespace std;

int main()
{

char x[4] = "cat";
char y[4];
char z[4] = "dog";

cout << "Enter a word:";
cin >> y;
cout << "Read " << strlen(y) << " characters." << endl;
cout << "x: " << x << endl;
cout << "y: " << y << endl;
cout << "z: " << z << endl;

}

C++ too – and no warnings!

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 28

#include <iostream>

using namespace std;

int main()
{

char x[4] = "cat";
char y[4];
char z[4] = "dog";

cout << "Enter a word:";
cin >> y;
cout << "Read " << strlen(y) << " characters." << endl;
cout << "x: " << x << endl;
cout << "y: " << y << endl;
cout << "z: " << z << endl;

}

$ g++ -o cin cin.cpp
Enter a word:abcdefg
Read 7 characters.
x: efg
y: abcdefg
z: dog

The data in y overflowed to x
x got corrupted

C++ too – and no warnings!

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 29

#include <iostream>

using namespace std;

int main()
{

char x[4] = "cat";
char y[4];
char z[4] = "dog";

cout << "Enter a word:";
cin >> y;
cout << "Read " << strlen(y) << " characters." << endl;
cout << "x: " << x << endl;
cout << "y: " << y << endl;
cout << "z: " << z << endl;

}

$ g++ -o cin cin.cpp
Enter a word:abcdefghijklmnopqrstuvwxyz0123456789
Read 36 characters.
x: efghijklmnopqrstuvwxyz0123456789
y: abcdefghijklmnopqrstuvwxyz0123456789
z: dog
Bus error: 10

With even more data,
x got corrupted
AND the program crashed!

Buffer overflow examples

30

void test(void) {
char name[10];

strcpy(name, "krzyzanowski");
}

That’s easy to spot!

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Another example

31

char configfile[256];
char *base = getenv("BASEDIR");

if (base != NULL)
sprintf(configfile, "%s/config.txt", base);

else {
fprintf(stderr, "BASEDIR not set\n");

}

How about this?

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Buffer overflow attacks
To exploit a buffer overflow

• Identify overflow vulnerability in a program
– Black box testing
• Trial and error
• Fuzzing tools (more on that …)

– Inspection
• Study the source
• Trace program execution

• Understand where the buffer is in memory and whether there is
potential for corrupting surrounding data

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 32

What’s the harm?
Execute arbitrary code, such as starting a shell

Code injection, stack smashing
– Code runs with the privileges of the program
• If the program is setuid root then you have root privileges
• If the program is on a server, you can run code on that server

• Even if you cannot execute code…
– You may crash the program or change how it behaves
– Modify data
– Denial of service attack

• Sometimes the crashed code can leave a core dump
– You can access that and grab data the program had in memory

33February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Taking advantage of unchecked bounds

34

#include <stdio.h>
#include <strings.h>
#include <stdlib.h>

int
main(int argc, char **argv)
{

char pass[5];
int correct = 0;

printf("enter password: ");
gets(pass);
if (strcmp(pass, "test") == 0) {

printf("password is correct\n");
correct = 1;

}
if (correct) {

printf("authorized: running with root privileges...\n");
exit(0);

}
else

printf("sorry - exiting\n");
exit(1);

}

$./buf
enter password: abcdefghijklmnop
authorized: running with root privileges...

Run on my Raspberry Pi
Raspbian GNU/Linux 10
5.10.63-v7l+

Or my Mac Mini M1 running macOS 12.2
Or my Intel i7 iMac running macOS 12.2

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

It’s a bounds checking problem
• C and C++
– Allow direct access to memory
– Do not check array bounds
– Functions often do not even know array bounds
• They just get passed a pointer to the start of an array

• This is not a problem with strongly typed languages
– Java, C#, Python, etc. check sizes of structures

• But C is in the top 4-5 of popular programming languages
– #1 for system programming & embedded systems
– And most compilers, interpreters, and libraries are written in C

35February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 36

Anatomy of overflows
Part 2

Linux process memory map*

37

unused

Program (text)

Initialized data

Uninitialized data (bss)

OS High memory

0x08048000

0xc0000000

Shared libraries
0x40000000

brk
Heap

Stack

Loaded by execveCommand-line args & environment
variables

*Not to scale

Top of stack (it grows down)

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

The stack

38

func(param_1, param_2, param_3)

Calling function:
pushl param_3
pushl param_2
pushl param_1
call func
. . .

func: pushl rbp
movl %rsp, %rbp
subl $20, %rsp
. . .
leave
ret

Previous return address

Previous frame pointer

param_3

param_2

param_1

Return address

Saved rbp (frame pointer)

Local variable a

Local variable b

Local variable c rsp
(current stack pointer)

rbp
(current frame pointer)

High memory

Low memory

Note: rbp & rsp are used in 64-bit processors
ebp & esp are used in 32-bit processors

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Causing overflow
Overflow can occur when programs do not validate the length of
data being written to a buffer

This could be in your code or one of several “unsafe” libraries
– strcpy(char *dest, const char *src);
– strcat(char *dest, const char *src);
– gets(char *s);
– scanf(const char *format, …)
– Others…

39February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Overflowing the buffer

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 40

void func(char *s) {
char buf[128];

strcpy(buf, s);
/* ... */

}

What if strlen(s) is >127 bytes?

Return address

Previous frame pointer

parameter (s)

Return address

Saved rbp (frame pointer)

char buf[128] rsp (current stack pointer)

rbp (current frame pointer)

High memory

Low memory

Overflowing the buffer

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 41

void func(char *s) {
char buf[128];

strcpy(buf, s);
/* ... */

}

What if strlen(s) is >127 bytes?
You overwrite the saved rbp and then the return address

Return address

Previous frame pointer

parameter (s)

Return address

Saved rbp (frame pointer)

char buf[128] rsp (current stack pointer)

rbp (current frame pointer)

High memory

Low memory

Overwriting the return address
• If we overwrite the return address
– We change what the program executes when it returns from the function

• “Benign” overflow
– Overflow with garbage data
– Chances are that the return address will be invalid
– Program will die with a SEGFAULT
– Availability attack

42February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Programming at the machine level
• High level languages (even C) constrain you in
– Access to variables (local vs. global)
– Control flows in predictable ways
• Loops, function entry/exit, exceptions

• At the machine code level
– No restriction on where you can jump
• Jump to the middle of a function … or to the middle of a C statement
• Returns will go to whatever address is on the stack
• Unused code can be executed (e.g., library functions you don’t use)

43February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Subverting control flow
Malicious overflow
– Fill the buffer with malicious code
– Overflow to overwrite saved %rbp
– Then overwrite saved the %rsp

(return address) with the address of
the malicious code in the buffer

44

Previous return address

Previous frame pointer

params

Return address

Saved rbp (frame pointer)

char buf[128]

MALICIOUS CODE

High memory

Low memory

Overwritten return
address

O
ve

rw
rit

te
n

ar
ea

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Subverting control flow: more code
If you want to inject a lot of code
Just go further down the stack (into higher
memory

– Initial parts of the buffer will be garbage
data … we just need to fill the buffer

– Then we have the new return address

– Then we have malicious code

– The return address points to the malicious
code

45

Previous return address

Previous frame pointer

params

Return address

Saved rbp (frame pointer)

char buf[128]

Junk … we don’t care what
goes here – we just need to

overflow this buffer

High memory

Low memory

Overwritten return
address

O
ve

rw
rit

te
n

ar
ea

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

MALICIOUS CODE
… still part of the

overflow of buf[128]

Start of buf[128]

Address Uncertainty
What if we’re not sure what the exact
address of our injected code is?

NOP slide = NOP sled = landing zone
– Pre-pad the code with a lots of NOP

instructions
• NOP
• moving a register to itself
• adding 0
• etc.

– Set the return address on the stack to any
address within the landing zone

46

MALICIOUS CODE
(still part of the

overflow of buf)

Return address

Saved rbp (frame pointer)

char buf[128]

OVERFLOW JUNK

High memory

Low memory

OVERFLOW JUNK

Overwritten return
addressO

ve
rw

rit
te

n
ar

ea NOP – NOP – NOP – NOP

NOP – NOP – NOP – NOP
NOP – NOP – NOP – NOP

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Off-by-one overflows

47February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Safe functions aren’t always safe
• Safe counterparts require a count
– strcpy → strncpy
– strcat → strncat
– sprintf → snprintf

• But programmers can miscount!

48

char buf[512];
int i;

for (i=0; i<=512; i++)
buf[i] = stuff[i];

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Off-by-one errors
• We can’t overwrite the return address

• But we can overwrite one byte of the saved frame pointer
– Least significant byte on Intel/ARM systems
• Little-endian architecture

• What’s the harm of overwriting
the frame pointer?

49

Return address

Previous frame pointer

params

Return address

Saved rbp (frame pointer)

char buf[128]

MALICIOUS CODE

High memory

Low memory

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Off-by-one errors: frame pointer mangling
At the end of a function:
– The compiler resets the stack pointer (%rsp) to the base of the frame (%rbp):

mov %rsp, %rbp
– and restores the saved frame pointer (which we corrupted) from the top of the stack:

pop %rbp pops corrupted frame pointer into rbp, the frame pointer
ret

The program now has the wrong frame pointer when the function returns

The function returns normally –
we could not overwrite the return address

BUT … when the function that called it tries to return, it will update
the stack pointer to what it thinks was the valid base pointer and
return there:
mov %rsp, %rbp rbp is our corrupted one
pop %rbp we don’t care about the base pointer
ret return pops the stack from our buffer, so we can jump anywhere

50February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Return address

Previous frame pointer

params

Return address

Saved rbp (frame pointer)

char buf[128]

MALICIOUS CODE

High memory

Low memory

Junk frame pointer

Malicious return address

Off-by-one errors: frame pointer mangling
• Stuff the buffer with
– Malicious code, pointed to by ”saved” %rip
– “saved” %rbp (can be garbage)
– “saved” %rip (return address)
– Malicious code, pointed to by ”saved” %rip

• When the function’s calling function returns
– It will return to the “saved” %rip, which

points to malicious code in the buffer

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 51

Return address

Previous frame pointer

params

Return address

Saved rbp (frame pointer)

char buf[128]

MALICIOUS CODE

High memory

Low memory

Junk frame pointer

Malicious return address

Heap & text overflows

52February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Linux process memory map

53

unused

Program (text)

Initialized data

Uninitialized data (bss)

OS High memory

0x08048000

0xc0000000

Shared libraries
0x40000000

brk
Heap

Stack

Loaded by execve

Command-line args & environment
variables

• Statically allocated variables &
dynamically allocated memory
(malloc) are not on the stack

• Heap data & static data do not
contain return addresses
– No ability to overwrite a return

address

Are we safe?

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Memory overflow

54

#include <string.h>
#include <stdlib.h>
#include <stdio.h>

char a[15];
char b[15];

int
main(int argc, char **argv)
{

strcpy(b, "abcdefghijklmnopqrstuvwxyz");
printf("a=%s\n", a);
printf("b=%s\n", b);
exit(0);

}

a=qrstuvwxyz
b=abcdefghijklmnopqrstuvwxyz

The program

The output
(Linux 4.4.0-59, gcc 5.4.0)

We may be able to overflow a
buffer and overwrite other
variables in higher memory

For example, overwrite a file
name

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Memory overflow – filename example

55

#include <string.h>
#include <stdlib.h>
#include <stdio.h>

char afile[20];
char mybuf[15];

int main(int argc, char **argv)
{

strncpy(afile, "/etc/secret.txt", 20);
printf(”Planning to write to %s\n", afile);
strcpy(mybuf, "abcdefghijklmnop/home/paul/writehere.txt");
printf("About to open afile=%s\n", afile);
exit(0);

}

Planning to write to /etc/secret.txt
About to open afile=/home/paul/writehere.txt

The program

The output
(Linux 5.10.63, gcc 8.3.0)

mybuf can overflow into afileWe overwrote the file
name afile by writing
too much into mybuf!

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Overwriting variables: changing control flow
• Even if a buffer overflow does not touch the stack, it can modify

global or static variables

• Example:
– Overwrite a function pointer
– Function pointers are often

used in callbacks

56

int callback(const char* msg)
{

printf(“callback called: %s\n”, msg);
}
int main(int argc, char **argv)
{

static int (*fp)(const char *msg);
static char buffer[16];

fp = (int(*)(const char *msg))callback;
strcpy(buffer, argv[1]);
(int)(*fp)(argv[2]); // call the callback

}

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

The exploit
• The program takes the first two arguments from the command line
• It copies argv[1] into a buffer with no bounds checking

• It then calls the callback,
passing it the message
from the 2nd argument

The exploit
– Overflow the buffer
– The overflow bytes will contain the

address you really want to call
• They’re strings, so bytes with 0 in

them will not work … making this a
more difficult attack

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 57

int callback(const char* msg)
{

printf(“callback called: %s\n”, msg);
}
int main(int argc, char **argv)
{

static int (*fp)(const char *msg);
static char buffer[16];

fp = (int(*)(const char *msg))callback;
strcpy(buffer, argv[1]);
(int)(*fp)(argv[2]); // call the callback

}

printf attacks

58February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

printf and its variants
Standard C library functions for formatted output
– printf: print to the standard output
– wprintf: wide character version of printf
– fprintf, wfprintf: print formatted data to a FILE stream
– sprintf, swprintf: print formatted data to a memory location
– vprintf, vwprintf,vfprintf, vwfprintf :

print formatted data containing a pointer to argument list

Usage
printf(format_string, arguments ...)
printf(“The number %d in decimal is %x in hexadecimal\n”, n, n);
printf(“my name is %s\n”, name);

59February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Bad usage of printf
Programs often make mistakes with printf

Valid:
printf(“hello, world!\n”)

Also accepted … but not right
char *message = “hello, world\n”);
printf(message);

This works but exposes the chance that message will be changed

60

This should be a format string

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Dumping memory with printf

61

#include <stdio.h>
#include <string.h>

int
show(char *buf)
{

printf(buf); putchar('\n');
return 0;

}

int
main(int argc, char **argv)
{

if (argc == 2) {
show(argv[1]);

}
}

$./tt hello
hello

$./tt "hey: %012lx"
hey: 7fffe14a287f

printf does not know how many arguments it has.
It deduces that from the format string.

If you don’t give it enough, it keeps reading from the
stack

We can dump arbitrary memory by walking up the stack

$./tt %08x.%08x.%08x.%08x.%08x
6d10c308.6d10c320.85d636f0.a1b80d80.a1b80d80

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Getting into trouble with printf
Have you ever used %n ?

Format specifier that will store into memory the number of bytes written so far
int printbytes;
printf("paul%n says hi\n", &printbytes);

Will print
paul says hi

and will store the number 4 (which is the value of strlen(“paul”)) into
the variable printbytes

If we combine this with the ability to change the format specifier, we can write
to other memory locations

62February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Bad usage of printf: %n

63

#include <stdio.h>
#include <string.h>

int
show(char *buf)
{

printf(buf);
putchar('\n');
return 0;

}

int
main(int argc, char **argv)
{

char buf[256];

if (argc == 2) {
strncpy(buf, argv[1], 255);
show(buf);

}
}

Buffer

Pointer to buffer

Return address

Pointer to buffer (printf format)

Return address

sh
ow

pr
in
tf

printf treats this as the 1st parameter after the
format string.
• We can skip ints with formatting strings such

as %x
• The buffer can contain the address that we

want to overwrite

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Saved frame pointer

Saved frame pointer

printf attacks: %n
What good is %n when it’s just # of bytes written?
– You can specify an arbitrary number of bytes in the format string

printf(“%.622404x%.622400x%n” . . .

Will write the value 622404+622400 = 1244804 = 0x12fe84

What happens?
– %.622404x = write at least 622404 characters for this value
– Each occurrance of %x (or %d, %b, ...) will go down the stack by one parameter (usually 8

bytes). We don‘t care what gets printed
– The %x directives enabled us to get to the place on the stack where we want to change a

value
– %n will write that value, which is the sum of all the bytes that were written

64February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 65

Defending against hijacking attacks
Part 3

Fix bugs
• Audit software

• Check for buffer lengths whenever adding to a buffer

• Search for unsafe functions
– Use nm and grep to look for function names

• Use automated tools
– Clockwork, CodeSonar, Coverity, Parasoft, PolySpace, Checkmarx, PREfix,

PVS-Studio, PCPCheck, Visual Studio

• Most compilers and/or linkers now warn against bad usage

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 66

tt.c:7:2: warning: format not a string literal and no format arguments [-Wformat-security]

zz.c:(.text+0x65): warning: the 'gets' function is dangerous and should not be used.

Fix bugs: Fuzzing
• Generate semi-random data as input to detect bugs
– Locating input validation & buffer overflow problems
– Enter unexpected input
– See if the program crashes

• Enter long strings with searchable patterns

• If the app crashes
– Search the core dump for the fuzz pattern to find where it died

• Automated fuzzer tools help with this
– E.g., libFuzzer and AFL in C/C++; cargo-fuzz in Rust

• Or … try to construct exploits using gdb
February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 67

Fuzzing in Go
• Fuzzing available in Go 1.18 (released Feb 2022)

• Goal
– Make fuzz testing as easy as benchmarking or unit testing
– No need for custom tools or separate files

• Seed corpus: user-specified set of inputs to a fuzz test
– Fuzzing engine will mutate these inputs to discover new code coverage

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 68

https://go.googlesource.com/proposal/+/master/design/draft-fuzzing.md

Don’t use C or C++
• Most other languages feature
– Run-time bounds checking
– Parameter count checking
– Disallow reading from or writing to arbitrary memory locations

• Hard to avoid in many cases

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 69

Specify & test code
• If it’s in the specs, it is more likely to be coded & tested

• Document acceptance criteria
– “File names longer than 1024 bytes must be rejected”
– “User names longer than 32 bytes must be rejected”

• Use safe functions that check allow you to specify buffer limits

• Ensure consistent checks to the criteria across entire source
– Example, you might #define limits in a header file but some files might use a

mismatched number.

• Don't allow user-generated format strings and check results from printf

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 70

Safer libraries
• Compilers warn against unsafe strcpy or printf

• Ideally, fix your code!

• Sometimes you can’t recompile (e.g., you lost the source)
• libsafe
– Dynamically loaded library
– Intercepts calls to unsafe functions
– Validates that there is sufficient space in the current stack frame

(framepointer – destination) > strlen(src)

71February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

Dealing with buffer overflows: No Execute (NX)
Data Execution Prevention (DEP)
– Disallow code execution in data areas – on the stack or heap
– Set MMU per-page execute permissions to no-execute
– Intel and AMD added this support in 2004

– Examples
• Microsoft DEP (Data Execution Prevention) (since Windows XP SP2)
• Linux PaX patches
• OS X ≥10.5

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 72

No Execute – not a complete solution
No Execute Doesn’t solve all problems
– Some applications need an executable stack (LISP interpreters)
– Some applications need an executable heap
• code loading/patching
• JIT compilers

– Does not protect against heap & function pointer overflows
– Does not protect against printf problems

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 73

Return-to-libc
• Allows bypassing need for non-executable memory
– With DEP, we can still corrupt the stack … just not execute code from it

• No need for injected code

• Instead, reuse functionality within the exploited app

• Use a buffer overflow attack to create a fake frame on the stack
– Transfer program execution to the start of a library function
– libc = standard C library … every program uses it!
– Most common function to exploit: system
• Runs the shell
• New frame in the buffer contains a pointer to the command to run (which is also in the buffer)
– E.g., system(“/bin/sh”)

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 74

Return Oriented Programming (ROP)
• Overwrite return address with address of a library function
– Does not have to be the start of the library routine
• Use “borrowed chunks” from a various libraries

– When the library gets to RET, that location is on the stack, under the attacker’s control

• Chain together sequences ending in RET
– Build together “gadgets” for arbitrary computation
– Buffer overflow contains a sequence of addresses that direct each successive RET

instruction

• It is possible for an attacker to use ROP to execute arbitrary algorithms
without injecting new code into an application
– Removing dangerous functions, such as system, is ineffective
– Make attacking easier: use a compiler that combines gadgets!
• Example: ROPC – a Turing complete compiler, https://github.com/pakt/ropc

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 75

Dealing with buffer overflows & ROP: ASLR
• Addresses of everything were well known
– Dynamically-loaded libraries used to be loaded in the same place each time, as was the

stack & memory-mapped files
– Well-known locations make them branch targets in a buffer overflow attack

• Address Space Layout Randomization (ASLR)
– Position stack and memory-mapped files to random locations
– Position libraries at random locations
• Libraries must be compiled to produce position independent code

– Implemented in
• OpenBSD, Windows ≥Vista, Windows Server ≥2008, Linux ≥2.6.15, macOS, Android ≥4.1, iOS ≥4.3

– But … not all libraries (modules) can use ASLR
• And it makes debugging difficult

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 76

Address Space Layout Randomization
• Entropy
– How random is the placement of memory regions?

• Examples
– Linux Exec Shield patch
• 19 bits of stack entropy, 16-byte alignment > 500K positions
• Kernel ASLR added in 3.14 (2014)

– Windows 7
• 8 bits of randomness for DLLs
– Aligned to 64K page in a 16MB region: 256 choices

– Windows 8
• 24 bits for randomness on 64-bit processors: >16M choices

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 77

Dealing with buffer overflows: Canaries
Stack canaries
– Place a random integer before the return address on the stack
– Before a return, check that the integer is there and not overwritten: a buffer

overflow attack will likely overwrite it

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 78

int a, b=999;
char s[5], t[7];

gets(s);

Return addr
a
b

s[5]
t[7]

no canary

m
em

or
y

at
 ri

sk

Stack

Dealing with buffer overflows: Canaries
Stack canaries
– Place a random integer before the return address on the stack
– Before a return, check that the integer is there and not overwritten: a buffer

overflow attack will likely overwrite it

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 79

saved frame pointer

a
b

s[5]
t[7]

no canary

m
em

or
y

at
 ri

sk saved frame pointer

CANARY
a
b

s[5]
t[7]

at
 ri

sk

with canary

Stack Stack
parameters

return addr

parameters

return addr

int a, b=999;
char s[5], t[7];

gets(s);

Refining Stack Canaries: ProPolice
IBM’s ProPolice gcc patches
– Allocate arrays into higher memory in the stack
– Ensures that a buffer overflow attack will not clobber non-array variables
– Increases likelihood that the overflow won’t attack the logic of the current function

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 80

saved frame pointer

a
b

s[5]
t[7]

saved frame pointer

CANARY
s[5]
t[7]
a
b

at
 ri

sk

no canary with canary

Stack Stack
parameters

return addr

parameters

return addr

int a, b=999;
char s[5], t[7];

gets(s);

Stack canaries
• Again, not foolproof

• Heap-based attacks are still possible

• Performance impact
– Need to generate a canary on entry to a function

and check canary prior to a return
– Minimal degradation ~8% for apache web server

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 81

Intel CET: Control-Flow Enforcement Technology
Developed by Intel & Microsoft to thwart ROP attacks
– Available with the Tiger Lake microarchitecture (mid-2020)

Two mechanisms
1. Shadow stack

– Secondary stack
• Only stores return addresses
• MMU attribute disallows use of regular store instructions to modify it

– Stack data overflows cannot touch the shadow stack – cannot change control flow

2. Indirect branch tracking

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 82

Intel CET: Control-Flow Enforcement Technology
Indirect Branch Tracking
– Restrict a program’s ability to use jump tables

– Jump table = table of memory locations the program can branch
• Used for switch statements & various forms of lookup tables

– Jump-Oriented Programming (JOP) and Call Oriented Programming (COP)
• Techniques where attackers abuse JMP or CALL instructions
• Like Return-Oriented Programming but use gadgets that end with indirect branches

– New ENDBRANCH (ENDBR64) instruction allows a programmer to specify valid targets for
indirect jumps
• If you take an indirect jump, it has to go to an ENDBRANCH instruction
• If the jump goes anywhere else, it will be treated as an invalid branch and generate a fault

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 83

Heap attacks – pointer protection
• Encrypt pointers (especially function pointers)
– Example: XOR with a stored random value
– Any attempt to modify them will result in invalid addresses
– XOR with the same stored value to restore original value

• Degrades performance when function pointers are used

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 84

Hardware Attacks: Example - Rowhammer

DDR4 memory protections are broken wide open
by new Rowhammer technique
Researchers build "fuzzer" that supercharges potentially serious bitflipping exploits.
Dan Goodin • 11/15/2021

Rowhammer exploits that allow unprivileged attackers to change or corrupt data stored in vulnerable
memory chips are now possible on virtually all DDR4 modules due to a new approach that neuters
defenses chip manufacturers added to make their wares more resistant to such attacks.

Rowhammer attacks work by accessing—or hammering—physical rows inside vulnerable chips
millions of times per second in ways that cause bits in neighboring rows to flip, meaning 1s turn to 0s
and vice versa. Researchers have shown the attacks can be used to give untrusted applications nearly
unfettered system privileges, bypass security sandboxes designed to keep malicious code from
accessing sensitive operating system resources, and root or infect Android devices, among other
things.

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 85

https://arstechnica.com/gadgets/2021/11/ddr4-memory-is-even-more-susceptible-to-rowhammer-attacks-than-anyone-thought/

Hardware Attacks: Example - Rowhammer
• New attack technique discovered
– Uses non-uniform patterns that access two or more rows with different frequencies
– Bypasses all defenses built into memory hardware
– 80% of devices can be hacked this way
– Cannot be patched!

• Sample attacks
– Gain unrestricted access to all physical memory by changing bits in the page table entry
– Give untrusted applications root privileges
– Extract encryption key from memory

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 86

The end

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski 87

The End

February 9, 2022 93CS 419 © 2022 Paul Krzyzanowski

Top Software Weaknesses for 2020
MITRE, a non-profit organization that manages federally-funded research & development centers,
publishes a list of top security weaknesses

94

https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html

Rank Name Score

1 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') 46.81

2 Out-of-bounds Write 46.17
3 Improper Input Validation 33.47
4 Out-of-bounds Read 26.50
5 Improper Restriction of Operations within the Bounds of a Memory Buffer 23.73
6 SQL Injection 20.69
7 Exposure of Sensitive Information to an Unauthorized Actor 19.16
8 Use After Free 18.87
9 Cross-Site Request Forgery (CSRF) 17.29

10 OS Command injection 16.44

February 9, 2022 CS 419 © 2022 Paul Krzyzanowski

