
CS 419: Computer Security

Paul Krzyzanowski

Week 8: Authentication

© 2022 Paul Krzyzanowski. No part of this
content, may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Linux random # generation
Random # generation cleaned up in Linux 5.17 and 5.18

• /dev/urandom
– Would block until there was sufficient entropy detected in the system
– Danger of excessive (possibly indefinite) blockingg

• /dev/random & /dev/urandom are now equivalent
– Random driver actively adds entropy using the processor's cycle counter

(measuring the elapsed time after running the scheduler) if it doesn't have
enough

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski 2

https://www.zx2c4.com/projects/linux-rng-5.17-5.18/

3

Hundreds of GoDaddy-hosted sites
backdoored in a single day
Bill Toulas • March 16, 2022

Internet security analysts have spotted a spike in backdoor infections on WordPress websites hosted on GoDaddy's Managed
WordPress service, all featuring an identical backdoor payload. The case affects internet service resellers such as MediaTemple,
tsoHost, 123Reg, Domain Factory, Heart Internet, and Host Europe Managed WordPress.

The discovery comes from Wordfence, whose team first observed the malicious activity on March 11, 2022, with 298 websites
infected by the backdoor within 24 hours, 281 of which were hosted on GoDaddy.

Old template spammer

The backdoor infecting all sites is a 2015 Google search SEO-poisoning tool implanted on the wp-config.php to fetch spam link
templates from the C2 that are used to inject malicious pages into search results.

The campaign uses predominately pharmaceutical spam templates, served to visitors of the compromised websites instead of the
actual content.

The goal of these templates is likely to entice the victims to make purchases of fake products, losing money and payment details to the
threat actors.

https://www.bleepingcomputer.com/news/security/hundreds-of-godaddy-hosted-sites-backdoored-in-a-single-day/

March 24, 2022 © 2022 Paul Krzyzanowski

Weak RSA Public Keys
March 14, 2022 Update

• Older software generated RSA keys that can
be broken instantly with commodity
hardware

• SafeZone library doesn't randomize the
prime numbers well
– Used to generate RSA keys
– After selecting one prime #, the second one is in

close proximity to the first

• Keys generated with primes that are too
close together can be broken with Fermat's
factorization method, described in 1643

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski 4

https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/

Weak RSA Public Keys
• Product of two large primes can be written as

N = (a-b)(a+b)
– where a is the middle between the two primes
– b is the distance from the middle to each of the primes

• If the primes are close, then a is close to √N

• Attack: guess a by starting from √N and then incrementing the guess
– Calculate b2 = a2 - N
– If the result is a square then we guessed correctly
– Calculate the factors p, q as p=a+b, q=a-b

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski 5

Authentication

• Identification: who are you?
• Authentication: prove it
• Authorization: you can do this

Some protocols (or services) combine all three

6March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Cryptographic Authentication

March 24, 2022 7CS 419 © 2022 Paul Krzyzanowski

The concept: prove you have the key
Ask the other side to prove they can encrypt or decrypt a message with
the key

March 24, 2022 8

Create a nonce, n
(random bunch of bits)

n

Encrypt the nonce with the
shared key, K

EK(n)
Validate the result:
DK(EK(n)) ≟ n

• This assumes a pre-shared key and symmetric cryptography.
• After that, Alice can encrypt & send a session key.
• Minimize the use of the pre-shared key.

Alice Bob

CS 419 © 2022 Paul Krzyzanowski

Mutual authentication
• Alice had Bob prove he has the key

• Bob may want to validate Alice as well
⇒ mutual authentication
– Bob will do the same thing: have Alice prove she has the key

• Pre-shared key: Alice encrypts the nonce with the key

• Public key: Alice encrypts the nonce with her private key

March 24, 2022 9CS 419 © 2022 Paul Krzyzanowski

Combined authentication & key exchange
Basic idea with symmetric cryptography:
Use a trusted third party (Trent) that has all the keys
• Alice wants to talk to Bob: she asks Trent

– Trent generates a session key encrypted for Alice
– Trent encrypts the same key for Bob (ticket)

• Authentication is implicit:
– If Alice can encrypt a message for Trent, she proved she knows her key
– If Bob can decrypt the message from Trent, he proved he knows his key

• Trent can also perform authorization
• Weaknesses that we need to address:

– Replay attacks

March 24, 2022 10

A B

T

EA(K) EB(K)

CS 419 © 2022 Paul Krzyzanowski

Combined authentication &
key exchange algorithms

11March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Security Protocol Notation
Z || W

– Z concatenated with W

A → B : { Z || W } kA,B
– A sends a message to B
– The message is the concatenation of Z & W and is encrypted by key kA,B, which is shared

by users A & B

A → B : { Z } kA || { W } kA,B
– A sends a message to B
– The message is a concatenation of Z encrypted using A’s key and W encrypted by a key

shared by A and B

r1, r2
– nonces – strings of random bits

12March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Bootstrap problem
How can Alice & Bob communicate securely?

• Alice cannot send a key to Bob in the clear
– We assume an unsecure network

• We looked at two mechanisms:
– Diffie-Hellman key exchange
– Public key cryptography

Let’s examine the problem some more … in the context of
authentication & key exchange

13March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Simple Protocol
Use a trusted third party – Trent – who has all the keys

Trent creates a session key for Alice and Bob

14

TrentAlice
Request session key to Bob

TrentAlice
{ kA,B } kA || { kA,B } kB

BobAlice
{ kA,B } kB

BobAlice
{ m } kA,B

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Problems
• How does Bob know he is talking to Alice?

– Trusted third party, Trent, has all the keys
– Trent knows the request came from Alice since only he and Alice can have the key
– Trent can authorize Alice’s request
– Bob gets a session key encrypted with Bob’s key, which only Trent could have created
• But Bob doesn’t know who requested the session – is the request really from Alice?
• Trent would need to add sender information to the message encrypted for Bob

• Vulnerable to replay attacks
– Eve records the message from Alice to Bob and later replays it
– Bob will think he’s talking to Alice and re-use the same session key

• Protocols should provide authentication & defense against replay attacks

March 24, 2022 15CS 419 © 2022 Paul Krzyzanowski

Needham-Schroeder
Add nonces – random strings (r1, r2) – to avoid replay attacks

16

TrentAlice
{ Alice || Bob || r1 }

TrentAlice
{ Alice || Bob || r1 || kA,B || { Alice || kA,B } kB } kA

BobAlice
{ Alice || kA,B } kB

BobAlice
{ r2 } kA,B

BobAlice
{ r2 – 1 } kA,B

➀
➁
➂
➃
➄

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Add nonces – random strings – avoid replay attacks
• Alice knows only Bob & Trent can read this

and get the session key.
• Bob knows it’s a request from Alice

TrentAlice
{ Alice || Bob || r1 }

TrentAlice
{ Alice || Bob || r1 || kA,B || { Alice || kA,B } kB } kA

BobAlice
{ Alice || kA,B } kB

BobAlice
{ r2 } kA,B

BobAlice
{ r2 – 1 } kA,B

➀
➁
➂
➃
➄

Needham-Schroeder

17March 24, 2022

• Bob now tries to find out if this is a replay attack
• If it is, Eve will not be able to decipher r2

Message must have been created by Trent & is a response to
the first message (contains r1). Use of r1 ensures it’s not a
replay attack.

This is an authentication step: Bob asks Alice to
prove she knows kA,B

CS 419 © 2022 Paul Krzyzanowski

Needham-Schroeder Protocol Vulnerability
• We assume all keys are secret

• But suppose Eve can obtain the session key from an old message
(she worked hard, got lucky, and cracked an earlier message)

March 24, 2022 18

BobEve
{ Alice || kA,B } kB

BobEve
{ r2 } kA,B

BobEve
{ r2 – 1 } kA,B

Bob sees this as a legitimate request
approved by Trent. It was … but earlier!

Eve the eavesdropper. She decrypted an old session key and is trying
to get Bob to use it to think he’s talking to Alice.

Needham-Schroeder is still vulnerable to a certain
replay attack … if an old session key is known!

➂
➃
➄

CS 419 © 2022 Paul Krzyzanowski

Denning-Sacco Solution
• Problem: replay in the third step of the protocol
– Eve replays the message: { Alice || kA,B } kB

• Solution: use a timestamp T to detect replay attacks
– The trusted third party (Trent) places a timestamp in a message that is encrypted

for Bob
– The attacker has an old session key but not Alice’s, Bob’s or Trent’s keys
– Eve cannot spoof a valid message that is encrypted for Bob

19March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Needham-Schroeder w/Denning-Sacco mods
Add nonces – random strings – AND a timestamp

20

TrentAlice
{ Alice || Bob || r1 }

TrentAlice
{ Alice || Bob || r1 || kA,B || { Alice || T || kA,B } kB } kA

BobAlice
{ Alice || T || kA,B } kB

BobAlice
{ r2 } kA,B

BobAlice
{ r2 – 1 } kA,B

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Problem with timestamps
• Use of timestamps relies on synchronized clocks
– Messages may be falsely accepted or falsely rejected because of bad time

• Time synchronization becomes an attack vector
– Create fake NTP responses
– Generate fake GPS signals

21March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Otway-Rees Protocol: Session IDs

Another way to correct the third message replay problem
• Instead of using timestamps
– Use a random integer, n, that is associated with all messages in the key

exchange

• The protocol is altered slightly
– Alice first sends a message to Bob

• The message contains the session ID & nonce encrypted with Alice’s secret key
– Bob forwards the message to Trent

• And creates a message containing a nonce & the same session ID encrypted with Bob’s
secret key

– Trent creates a session key & encrypts it for both Alice and for Bob

22March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Otway-Rees Protocol
Use nonces (r1, r2) & session IDs (n)

23

BobAlice
n || Alice || Bob || {r1 || n || Alice || Bob } kA

BobTrent

BobTrent

BobAlice
n || { r1 || kA,B } kA

n || Alice || Bob || {r1 || n || Alice || Bob } kA

{ r2 || n || Alice || Bob } kB

n || { r1 || kA,B } kA || { r2 || kA,B } kB

March 24, 2022

Alice sends the communication request to
Bob – with the session ID

Bob authenticates himself &
forwards request to Trent

CS 419 © 2022 Paul Krzyzanowski

Kerberos

24March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Kerberos
• Authentication service developed by MIT
– project Athena 1983-1988

• Uses a trusted third party & symmetric cryptography

• Based on Needham Schroeder with the Denning Sacco modification

• Passwords not sent in clear text
– assumes only the network can be compromised

• Supported in most all popular operating systems
– Default network authentication used in Microsoft Windows

– Supported in macOS, Linux, FreeBSD, z/OS, …
– Used by Rutgers to store NetIDs via the Central Authentication Service (CAS)

March 24, 2022 25CS 419 © 2022 Paul Krzyzanowski

Kerberos

Users and services authenticate themselves to each other

To access a service:
– User presents a ticket issued by the Kerberos authentication server
– Service uses the ticket to verify the identity of the user

Kerberos is a trusted third party
– Knows all (users and services) passwords
– Responsible for

• Authentication: validating an identity
• Authorization: deciding whether someone can access a service
• Key distribution: giving both parties an encryption key (securely)

26March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Kerberos – General Flow
User Alice wants to communicate with a service Bob

Both Alice and Bob have keys – Kerberos has copies
– key = hash(password)

Step 1:
– Alice authenticates with Kerberos server

• Gets session key and ticket

Step 2:
– Alice gives Bob the ticket, which contains the session key
– Convinces Bob that she got the session key from Kerberos

27March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Kerberos (1): Authorize, Authenticate

{ "Bob’s server", T, kA,B } kA

Alice Kerberos Authentication Service (AS)

{ "Alice", T, kA,B } kB

TICKET

28

{ "Alice” || "Bob" }

eh? (Alice can’t read this!)

Alice decrypts this:
• Gets ID of “Bob’s server”
• Gets session key & timestamp
• Knows message came from AS

“I’m Alice and want to talk to Bob”

If Alice is allowed to talk to Bob,
generate session key, kA,B

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Kerberos (2): Send key

Alice encrypts a timestamp with
session key

Bob decrypts the ticket:
• Ticket was created by Kerberos on

request from Alice
• Gets session key

Decrypts time stamp
• Validates time window
• Prevents replay attacks

{ "Alice", kA,B } kB || { T’ } kA,B

Alice Bob

ticket

29March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Kerberos (3): Authenticate recipient of message

Alice validates timestamp

Encrypt Alice’s timestamp in return
message

Alice Bob

{ T’+1 } kA,B

{Messages} kA,B
Alice & Bob communicate by
encrypting data with kA,B

30March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Kerberos key usage
• Every time a user wants to access a service
– User’s password (key) must be used to decode the message from Kerberos

• We can avoid this by caching the password in a file
– Not a good idea

• Another way: create a temporary password
– We can cache this temporary password
– It's just a session key to access Kerberos – to get access to other services
– Split Kerberos server into

Authentication Service + Ticket Granting Service

31March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Ticket Granting Server (TGS)
• TGS works like a temporary ID

• User first requests access to the TGS
– Contact Kerberos Authentication Service (AS knows all users & their keys)
• Gets back a ticket & session key to the TGS – these can be cached

• To access any service
– Send a request to the TGS – encrypted with the TGS session key

along with the ticket for the TGS
– The ticket tells the TGS what your session key is
– It responds with a session key & ticket for that service

March 24, 2022 32CS 419 © 2022 Paul Krzyzanowski

March 24, 2022 33

Kerberos AS + TGS: Step 1
Authentication

Service (AS)
Ticket Granting
Service (TGS)

A

users & user
keys Authorization

Kerberos
Key Distribution Center
(KDC)

(1) Request access to TGS

(2) Here's a session key & ticket for the TGS
Enter password to decrypt { kTGS,A } kA
Cache the TGS session key, kTGS,A

B

CS 419 © 2022 Paul Krzyzanowski

March 24, 2022 34

Kerberos AS + TGS
Authentication

Service (AS)
Ticket Granting
Service (TGS)

A B

users & user
keys Authorization

Kerberos
Key Distribution Center
(KDC)

(3) TGS-ticket, { T } kTGS,A

(4) Here's a session key & ticket for the Bob
session key: { "Bob’s server", T, kA,B } kTGS,A
ticket: { "Alice", T, kA,B } kB

{ Bob, please } kTGS,A

CS 419 © 2022 Paul Krzyzanowski

March 24, 2022 35

Kerberos AS + TGS
Authentication

Service (AS)
Ticket Granting
Service (TGS)

A B

users & user
keys Authorization

Kerberos
Key Distribution Center
(KDC)

(5) { "Alice", kA,B } kB || { T’ } kA,B

(6) { T'+1 } kA,B

{ messages }kA,B

CS 419 © 2022 Paul Krzyzanowski

Using Kerberos
$ kinit

Password: enter password
ask AS for permission (session key) to access TGS
Alice gets:

Compute key (A) from password to decrypt session key kA,TGS and
get TGS ID.

You now have a ticket to access the Ticket Granting Service

{“TGS”, T, kA,TGS } kA

{“Alice”, kA,TGS } kTGS

36

TGS Ticket

Session key & encrypted timestamp

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Using Kerberos
$ rlogin somehost

rlogin uses the TGS Ticket to request a ticket for the rlogin service
on somehost

{“rlogin@somehost”, kA,R} kA,TGS

{“Alice”, kA,R} kR

{“Alice”, kA,TGS} kTGS, {T} kA,TGS
rlogin TGS

kA,R = session key
for rlogin

ticket for rlogin server
on somehost

Alice sends session key, S, to TGS

Alice receives session key for rlogin service & ticket to pass to rlogin service

37March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Combined authentication & key exchange
Basic idea with symmetric cryptography:
Use a trusted third party (Trent) that has all the keys
• Alice wants to talk to Bob: she asks Trent
– Trent generates a session key encrypted for Alice
– Trent encrypts the same key for Bob (ticket)

• Authentication is implicit:
– If Alice can decrypt the session key, she proved she knows her key
– If Alice can decrypt the session key, he proved he knows his key

• Weaknesses that we had to fix:
– Replay attacks – add nonces – Needham-Schroeder protocol
– Replay attacks re-using a cracked old session key
• Add timestamps: Denning-Sacco protocol, Kerberos
• Add session IDs at each step: Otway-Rees protocol

March 24, 2022 38CS 419 © 2022 Paul Krzyzanowski

Public Key Based Key Exchange

We saw how this works…
• Alice’s & Bob’s public keys known to all: eA, eB
• Alice & Bob’s private keys are known only to the owner: da, db

• Simple protocol to send symmetric session key, kS:

39

{ kS } eBA B

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Adding authentication
• Have Bob prove that he has the private key
– Same way as with symmetric cryptography – prove he can encrypt or decrypt

40

{ r1 } eB

A B

Create nonce, r1

r1

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Adding mutual authentication
• Bob asks Alice to prove that she has her private key

41

{ r1 } eB

A B

Create nonce, r1

r1

r2

{ r2 } eA

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Adding identity binding
• How do we know we have the right public keys?

• Get the public key from a trusted certificate
– Validate the signature on the certificate before trusting the public key within

42

{ r1 } eB || CA
A B

CB

{ r2 } eB

{ r2 } eA || r1

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Cryptographic toolbox
• Symmetric encryption

• Public key encryption

• Hash functions

• Random number generators

43March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

User Authentication

March 24, 2022 44CS 419 © 2022 Paul Krzyzanowski

March 24, 2022 45

Three Factors of Authentication

1. Ownership Key, card Can be stolen
Something you have

2. Knowledge Passwords,
PINs

Can be guessed,
shared, stolenSomething you know

3. Inherence Biometrics
(face, fingerprints)

Requires hardware
May be copied
Not replaceable if lost or stolenSomething you are

CS 419 © 2022 Paul Krzyzanowski

Multi-Factor Authentication (MFA)
Factors may be combined
• ATM machine: 2-factor authentication (2FA)
– ATM card something you have
– PIN something you know

• Password + code delivered via SMS: 2-factor authentication
– Password something you know
– Code something you have: your phone

Two passwords ≠ Two-factor authentication
The factors must be different

March 24, 2022 46CS 419 © 2022 Paul Krzyzanowski

Authentication: PAP
Password Authentication Protocol

login, password

OKclient server

• Unencrypted, reusable passwords
• Insecure on an open network
• Also, the password file must be protected from open access
– But administrators can still see everyone’s passwords

What if you use the same password on Facebook as on Amazon?

47

name:password
database

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Passwords are bad
• Human readable & easy to guess

– People usually pick really bad passwords

• Easy to forget

• Usually short

• Static ... reused over & over
– Security is as strong as the weakest link
– If a username (or email) & password is stolen from one server, it might be usable on others

• Replayable
– If someone can grab it or see it, they can play it back

March 24, 2022 48CS 419 © 2022 Paul Krzyzanowski

It's not getting better

Top passwords by year 2013-2019: SplashData; 2020-2021: NordPass

Rank 2013 2014 2015 2016 2017 2018 2019 2020 2021

1 123456 123456 123456 123456 123456 123456 123456 123456 123456

2 password password password password password password 123456789 123456789 123456789

3 12345678 12345 12345678 12345 12345678 123456789 qwerty picture1 12345

4 qwerty 12345678 qwerty 12345678 qwerty 12345678 password password qwerty

5 abc123 qwerty 12345 football 12345 12345 1234567 12345678 password

6 123456789 123456789 123456789 qwerty 123456789 111111 12345678 111111 12345678

7 111111 1234 football 123456789
0 letmein 1234567 12345 123123 111111

8 1234567 baseball 1234 1234567 1234567 sunshine iloveyou 12345 123123

https://en.wikipedia.org/wiki/List_of_the_most_common_passwords
49

Recent large-scale leaks of password from servers have shown that people
DO NOT pick good passwords

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

https://nordpass.com/most-common-passwords-list/

Policies to the rescue?
Password rules

“Everyone knows that an exclamation point is a 1, or an I, or the
last character of a password. $ is an S or a 5. If we use these
well-known tricks, we aren’t fooling any adversary. We are
simply fooling the database that stores passwords into thinking
the user did something good”

— Paul Grassi, NIST

Periodic password change requirement problems
– People tend to change passwords rapidly to exhaust the

history list and get back to their favorite password
– Forbidding changes for several days enables a denial of service

attack
– People pick worse passwords, incorporating numbers,

months, or years

March 24, 2022 50

https://pages.nist.gov/800-63-3/sp800-63b.html#sec5
https://fortune.com/2017/05/11/password-rules/

CS 419 © 2022 Paul Krzyzanowski

NIST recommendations
• Remove periodic password change

requirements

• Drop complexity requirements
(numbers, letters, symbols)

• Choose long passwords

• Avoid
– Passwords obtained from databases of previous breaches
– Dictionary words
– Repetitive or sequential characters (e.g. ‘aaaaa’, ‘1234abcd’)
– Context-specific words, such as the name of the service, the username, and

derivatives thereof

March 24, 2022 51

https://pages.nist.gov/800-63-3/sp800-63b.html

CS 419 © 2022 Paul Krzyzanowski

PAP: Reusable passwords
Problem #1: Open access to the password file
What if the password file isn’t sufficiently protected and an intruder gets hold of it? All
passwords are now compromised!

Even if an admin sees your password, this might also be your password on other
systems.

How about encrypting the passwords?

• Where would you store the key?

• Adobe did that
– 2013 Adobe security breach leaked 152 million Adobe customer records
– Adobe used encrypted passwords
• But the passwords were all encrypted with the same key
• If the attackers steal the key, they get the passwords

52March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Poor Password Management
Adobe security breach (November 2013)
– 152 million Adobe customer records …

with encrypted passwords
– Adobe encrypted passwords with a symmetric key

algorithm
… and used the same key to encrypt every password!

53

Frequency Password
1 1,911,938 123456
2 446,162 123456789
3 345,834 password
4 211,659 adobe123
5 201,580 12345678
6 130,832 qwerty
7 124,253 1234567
8 113,884 111111
9 83,411 photoshop

10 82,694 123123
11 76,910 1234567890
12 76,186 000000
13 70,791 abc123
14 61,453 1234
15 56,744 adobe1
16 54,651 macromedia
17 48,850 azerty
18 47,142 iloveyou
19 44,281 aaaaaa
20 43,670 654321
21 43,497 12345
22 37,407 666666
23 35,325 sunshine
24 34,963 123321

Top 26 Adobe Passwords
March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

PAP: Reusable passwords

Solution:
Store a hash of the password in a file
– Given a file, you don’t get the passwords, only their hashes

• Hashes are one-way functions
• Example, Linux passwords hashed with a SHA-512 hash (SHA-2)

– Have to resort to a dictionary or brute-force attack

54March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Brute force
password attacks

MD5 hashed passwords cracked by a GeForce RTX
2080 GPU

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski 55

https://www.hivesystems.io/blog/are-your-passwords-in-the-green

What is a dictionary attack?
• Suppose you got access to a list of hashed passwords
• Brute-force, exhaustive search: try every combination
– Letters (A-Z, a-z), numbers (0-9), symbols (!@#$%...)
– Assume 30 symbols + 52 letters + 10 digits = 92 characters
– Test all passwords up to length 8
– Combinations = 928 + 927 + 926 + 925 + 924 + 923 + 922 + 921 = 5.189 × 1015

– If we test 1 billion passwords per second: ≈ 60 days

• But some passwords are more likely than others
– 1,991,938 Adobe customers used a password = “123456”
– 345,834 users used a password = “password”

• Dictionary attack
– Test lists of common passwords, dictionary words, names
– Add common substitutions, prefixes, and suffixes

56

Easiest to do if
the attacker
steals a hashed
password file –
so we read-
protect the
hashed
passwords to
make it harder
to get them

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

How to speed up a dictionary attack
Create a table of precomputed hashes

Now we just search a table for the hash to find the password

57March 24, 2022

SHA-256 Hash password

8d969eef6ecad3c29a3a629280e686cf0c3f5d5a86aff3ca12020c923adc6c92 123456

5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8 password

ef797c8118f02dfb649607dd5d3f8c7623048c9c063d532cc95c5ed7a898a64f 12345678

1c8bfe8f801d79745c4631d09fff36c82aa37fc4cce4fc946683d7b336b63032 letmein

… …

CS 419 © 2022 Paul Krzyzanowski

Salt: defeating dictionary attacks
Salt = random string (typically up to 16 characters)
– Concatenated with the password
– Stored with the password file (it’s not secret)

"VhsRrsFA" + "password"
Even if you know the salt, you cannot use precomputed hashes to search for a password
(because the salt is prefixed to the password string and becomes part of the hash)

You will not have a precomputed hash("VhsRrsFApassword")

58

Example:
SHA-256 hash of "password", salt = "VhsRrsFA”= hash("VhsRrsFApassword") =
b791b1b572c0025ef30ecc5fc5ecc5c623f52fca66250560fce8d22623b166c8

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Longer passwords
English text has an entropy of
about 1.2-1.5 bits per character

Random text has an entropy ≈
log2(1/95) ≈ 6.6 bits/character

59

Assume 95 printable characters

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Defenses
• Use longer passwords
– But can you trust users to pick ones with enough entropy?

• Rate-limit guesses
– Add timeouts after an incorrect password

• Linux waits about 3 secs – and terminates the login program after 5 tries

• Lock out the account after N bad guesses
– But this makes you vulnerable to denial-of-service attacks

• Use a slow algorithm to make guessing slow
– OpenBSD bcrypt Blowfish password hashing algorithm

60March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

People forget passwords
• Especially seldom-used ones – how do we handle that?
• Email them?

– Common solution
– Requires that the server be able to get the password (can’t store a hash)
– What if someone reads your email?

• Reset them?
– How do you authenticate the requester?
– Usually send reset link to email address created at registration
– But – what if someone reads your mail? …or you no longer have that address?

• Provide hints?
• Write them down?

– OK if the threat model is electronic only

61March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Reusable passwords in multiple places
• People often use the same password in different places

• If one site is compromised, the password can be used elsewhere
– People often try to use the same email address and/or username

• This is the root of phishing attacks

62March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

PC Magazine, September 21, 2021

https://www.pcmag.com/news/stop-using-the-same-password-on-multiple-sites-no-really

Password Managers
Software that stores passwords in an encrypted file

• Do you trust the protection?
– The reputation of the company & its security policies
– The synchronization capabilities?

• Can malware get to the database?

• In general, these are good
– Way better than storing passwords in a file
– Encourages having unique passwords per site
– Generates strong passwords
– Password managers may have the ability to recognize web sites

& defend against phishing while providing auto-complete convenience
for legitimate sites

63March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

March 24, 2022 64

LastPass fixes bug that could let
malicious websites extract your
last used password
Even password managers have security bugs
By Jon Porter • Sep 16, 2019

LastPass has patched a bug that would have allowed a
malicious website to extract a previous password
entered by the service’s browser extension. ZDNet
reports that the bug was discovered by Tavis Ormandy,
a researcher in Google’s Project Zero team, and was
disclosed in a bug report dated August 29th. LastPass
fixed the issue on September 13th, and deployed the
update to all browsers where it should be applied
automatically, something LastPass users would be
smart to verify.

Password managers have a security
flaw. But you should still use one.
Exclusive: A new study finds bugs in five of the most popular
password managers. So how is it safe to keep all your eggs
in one basket?
By Geoffrey A. Fowler • Feb 19, 2019

CS 419 © 2022 Paul Krzyzanowski

Key management risks
Password managers are a form of key storage
If attackers get your credentials, they can get all your passwords

March 24, 2022 65

https://www.zdnet.com/article/south-african-bank-to-replace-12m-cards-after-employees-stole-master-key/

Catalin Cimpanu • June 15 2020

South African bank to replace 12m cards after
employees stole master key
Postbank says employees printed its master key at one of its data centers and then
used it to steal $3.2 million.

Postbank, the banking division of South Africa's Post Office, has lost more than $3.2 million from fraudulent transactions and
will now have to replace more than 12 million cards for its customers after employees printed and then stole its master key.

The bank suspects that employees are behind the breach, the news publication said, citing an internal security audit they
obtained from a source in the bank.

The master key is a 36-digit code (encryption key) that allows its holder to decrypt the bank's operations and even access
and modify banking systems. It is also used to generate keys for customer cards.

CS 419 © 2022 Paul Krzyzanowski

PAP: Reusable passwords
Problem #2: Network sniffing or shoulder surfing

Passwords can be stolen by observing a user’s session in person or over a network:
– Snoop on http, telnet, ftp, rlogin, rsh sessions
– Trojan horse
– Social engineering
– Key logger, camera, physical proximity
– Brute-force or dictionary attacks

Solutions:

(1) Use an encrypted communication channel

(2) Use multi-factor authentication, so a password alone is not sufficient

(3) Use one-time passwords

66March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

One-time passwords
Use a different password each time
– If an intruder captures the transaction, it won’t work next time

Three forms

1. Sequence-based: password = f(previous password) or f(secret, sequence#)

2. Challenge-based: f(challenge, secret)

3. Time-based: password = f(time, secret)

67March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

S/key authentication
• One-time password scheme

• Produces a limited number of authentication sessions

• Relies on one-way functions

68March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Authenticate Alice for 100 logins

• Pick a random number, R

• Using a one-way function (e.g., a hash function), f(x):

x1 = f(R)
x2 = f(x1) = f(f(R))
x3 = f(x2) = f(f(f(R)))

… …
x100 = f(x99) = f(…f(f(f(R)))…)

• Then compute:
x101 = f(x100) = f(…f(f(f(R)))…)

S/key authentication

Give this list
to Alice

69March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

S/key authentication
Authenticate Alice for 100 logins

Store x101 in a password file or database record
associated with Alice

alice: x101

70March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

S/key authentication
Alice presents the last number on her list:

Alice to host: { “alice”, x100 }

Host computes f(x100) and compares it with the value in the database
if f(x100 provided by alice) = passwd(“alice”)

replace x101 in db with x100 provided by alice
return success

else
fail

Next time: Alice presents x99

If someone sees x100 there is no way to generate x99.

71March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

S/Key → OPIE
S/Key slightly refined by the U.S. Naval Research Laboratory (NRL)
• OPIE = One time Passwords In Everything

– Comes with FreeBSD, OpenBSD; available on Linux & other POSIX platforms
– Use /usr/sbin/opielogin instead of standard /bin/login program

• Same iterative generation as S/Key
starting_password = Hash(seed, secret_pass_phrase)

The seed can differ among applications and enables a user to use the same passphrase
securely for different applications

• Operates in two modes
– Sequence-based: pre-generate a sequence of one-time passwords
• A password is represented as 6 short words

– Challenge-based: user is presented with a sequence number
• Computes the proper password from a stored seed value

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski 72

See http://manpages.ubuntu.com/manpages/bionic/man4/opie.4freebsd.html

Authentication: CHAP
Challenge-Handshake Authentication Protocol

challenge

hash(challenge, secret)

OK

client server

Has shared secret Has shared secret

The challenge is a nonce (random bits).
We create a hash of the nonce and the secret.
An intruder does not have the secret and cannot do this!

73

= nonce

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

CHAP authentication

Alice network host

“alice” “alice” look up alice’s
key, K

generate random
challenge number CC

R ’ = f(K,C)

R ’ R = f(K, C)

R = R ’ ?“welcome”

an eavesdropper does not see K

74March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Time-Based Authentication
Time-based One-time Password (TOTP) algorithm
• Both sides share a secret key

– Sometimes sent via a QR code so the user can scan it into the TOTP app

• User runs TOTP function to generate a one-time password

one_time_password = hash(secret_key, time)
• User logs in with: name, password, and one_time_password

• Service generates the same password
one_time_password = hash(secret_key, time)

• Typically 30-second granularity for time
76March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Time-based One-time Passwords
Popular authenticators:

– Microsoft Two-step Verification
– Google Authenticator
– Facebook Code Generator
– Okta
– Duo

Used by
– Microsoft Azure, 365
– Amazon Web Services
– Bitbucket
– Dropbox
– Evernote
– Zoho
– Wordpress
– 1Password
– Many others…

March 24, 2022 77CS 419 © 2022 Paul Krzyzanowski

RSA SecurID card
Username:

paul

Password:

1234032848

PIN passcode from card+

Something you know
Something you have

1. Enter PIN
2. Press ◊
3. Card computes password
4. Read password & enter Password:

354982

Passcode changes every 60 seconds

78March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

SecurID card
Same principle as Time-based One-Time Passwords

• Proprietary device from RSA
– SASL mechanism: RFC 2808

• Two-factor authentication based on:
– Shared secret key (seed)

• stored on authentication card
– Shared personal ID – PIN

• known by user

79

Something you have

Something you know

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

SecurID (SASL) authentication: server side

• Look up user’s PIN and seed associated with the token

• Get the time of day
– Server stores relative accuracy of clock in that SecurID card
– historic pattern of drift
– adds or subtracts offset to determine what the clock chip on the SecurID card believes is its

current time

• Passcode is a cryptographic hash of seed, PIN, and time
– server computes f (seed, PIN, time)

• Server compares results with data sent by client

80March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

HOTP – Yubikey: Yubico One Time Password
HOTP = Hash-based One-Time Password

OTP = hash(hardware_id, passcode, counter)
Passcode generated on the device
from session counters,
previous values,
other sources

81March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Decrypt with
pre-shared AES key

See https://developers.yubico.com/OTP/OTPs_Explained.html

SMS/Email Authentication
• Second factor = your possession of a phone (or computer)

• After login, sever sends you a code via SMS (or email)

• Entering it is proof that you could receive the message

• Dangers
– SIM swapping attacks

(social engineering on the phone company)
• Targeted but viable for high-value targets

– Social engineering to get email credentials

CS 419 © 2022 Paul Krzyzanowski 82

https://www.engadget.com/canada-cryptocurrency-arrest-171617452.html

March 24, 2022

Man-in-the-Middle Attacks (MitM)
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

83

Alice Mike Bob

Hi Bob, I’m Alice

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Man-in-the-Middle Attacks (MitM)
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

84

Alice Mike Bob

Hi Bob, I’m Alice Hi Bob, I’m Alice

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Man-in-the-Middle Attacks (MitM)
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

85

Alice Mike Bob

What’s your password? What’s your password?

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Man-in-the-Middle Attacks (MitM)
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

86

Alice Mike Bob

It’s 123456 It’s 123456

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Man-in-the-Middle Attacks (MitM)
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

87

Alice Mike Bob

So long, sucker! Welcome, Alice!

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Man-in-the-Middle Attacks (MitM)
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

88

Alice Mike Bob

Huh? Download my files

March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

Guarding against man-in-the-middle attacks
• Use a covert communication channel
– The intruder won’t have the key
– Can’t see the contents of any messages

• Use signed messages for all communication
– Signed message = { message, private-key-encrypted hash of message }
– Both parties can reject unauthenticated messages
– The intruder cannot modify the messages

• Signatures will fail (they will need to know how to encrypt the hash)

• But watch out for replay attacks!
– May need to use session numbers or timestamps

89March 24, 2022 CS 419 © 2022 Paul Krzyzanowski

The End

March 24, 2022 90CS 419 © 2022 Paul Krzyzanowski

