
A VC-based API for Renegotiable QoS in Wireless ATM Networks

T.-W. Chen, P. Krzyzanowski, M. R. Lyu, C. Sreenan and J. Trotter
Bell Laboratories

Lucent Technologies, Murray Hill, NJ 07974

Abstract
Quality of Service (QoS) support for multimedia applications

has been widely discussed in the context of high speed wired net-
works. As interest increases in wireless ATM networks that extend
the connection to a wireless endpoint, the issue of QoS over a
wireless link has to be addressed. In this paper, we focus on the
provision of QoS at the application level in a wireless environ-
ment. Our work includes the design of an application program-
ming interface (API) that allows applications to specify and rene-
gotiate the QoS level during a call; as well as the implementation
of such API in a wireless ATM testbed: the SWAN system [1]. Ex-
periments are performed to verify the efficiency of this scheme,
and the results reveal quality control for multimedia applications
despite changing network conditions.

1 Introduction
This work is motivated by the rising popularity of wireless data

networking and the desire for mobile, multimedia communica-
tions. Wireless technology has recently begun to take off and it
is predicted that the market will reach 600 billion dollars by the
year 2010 [5]. Wireless networking is inherently unreliable and
various forms of interference result in changing bandwidth avail-
ability and low effective bandwidths due to high error rates. These
problems are exacerbated as users move around. Behavior of this
kind requires a fresh look at how such networks can be used to
support applications which demand some degree of predictability.
We adopt the approach of ATM, in which QoS is used to form a
service contract between applications and the network. We build
on that work by recognizing that an unreliable wireless network
demands a more dynamic approach to resource usage. Many ap-
plications can deal with varying bandwidth availability once pro-
vided with sufficient knowledge of the resource climate. Typical
examples include audio and video applications which can alter
their rate or encoding to match the available bandwidth or deal
with different error rates [3, 4]. Our contribution is a QoS scheme
which builds on this notion of adaptation by providing explicit
renegotiation. This is similar in spirit to the feedback mechanisms
for non real-time traffic in ATM, but differs in that we aim to pro-
vide feedback right up to the application level, not just to the send-
ing host [6]. Thus we incorporate renegotiation as a key part of
our QoS API (application programming interface).

In this paper, we report our work of realizing a QoS scheme

Currently with Computer Science Department, University of California, Los
Angeles.

Currently with InVenGen Inc., N.J.
Currently with AT&T Labs Research, Florham Park, N.J.

described above. The remainder of this paper is organized as fol-
lows: Section 2 briefly describes the wireless ATM network used
as a testbed for our QoS design, implementation and experiments.
Section 3 lays out the design policy of our QoS API and the mech-
anism to support it. In Section 4 we address the major functions
provided in our system, while in Section 5 the experimental re-
sults are analyzed. Finally, the conclusion and future plans are
described in Section 6.

2 The SWAN Environment

Wide Area ATM Fabric

Local Area Fabric

Base-stations

Wired Host

Base-stationsCompute
Server

Media Server (video source)

Personal Terminal
(small, simple, low cost) Laptop Computers

Laptops can move between
base-stations and remain
connected

Figure 1: SWAN system architecture

We used the SWAN (Seamless Wireless ATM Network) sys-
tem [1], which is a testbed for wireless networked computing. It
consists of mobile units which are usually laptops, and base sta-
tions which are connected to a backbone network. As indicated in
Fig. 1, both the base stations and laptops are equipped with a ra-
dio interface known as the FAWN (Flexible Adapter for Wireless
Networking) [7] card that allows them to communicate with each
other wirelessly. Each base station has a range of 100 feet inside
a building, providing access to a local area network for mobiles
in its vicinity. The mobiles communicate with the base stations
and with each other, allowing them to create ad-hoc networks that
continually change as the mobiles move around.

UPSTREAM DOWNSTREAM UPSTREAM DOWNSTREAM

10 ms 10 ms Time
1 ms (turn-around time)

Figure 2: The SWAN TDD scheme

It is worth noting that a TDD (Time Division Duplex) scheme
shown in Fig 2 is used to share the bandwidth between the base
station and the mobile host. As described in [1, 2], the traffic
of each direction alternatively transmits a data burst of 10 ATM
cells at a time and then switches to receiving mode for data from
the other direction. Due to the overhead introduced by the TDD
scheme and the ATM cell structure used in SWAN, the achievable
bandwidth is 240 Kbps in each direction.

3 Design of QoS-VC API
The goal for the design of this API is to use existing interfaces

and facilities provided by widely accepted operating systems, in-
stead of creating an ad-hoc system or proposing a new, proprietary
interface. As SWAN was first developed under Linux, a UNIX-
like system, it will be rather easy for a programmer to access data
and manipulate QoS on each VC just like an ordinary device under
UNIX. Based on this consideration, the QoS-VC API instantiates
each ATM Virtual Circuit as a unique character device, and the
QoS negotiation is considered on a per-VC basis. In this section,
we describe the detail of each API function, the mechanism to re-
alize this QoS-VC scheme and the functions that achieved by this
scheme.

3.1 The API
int open(char *vc dev name, int flags)
The open() function activates a VC by opening a VC de-
vice specified by vc dev name, which corresponds to an
I/O queue in the device driver (described later). Applications
may request any VC as long as it is not exclusively used by
other entities. open() returns the handler for access to the
VC. If open() returns -1, it means that it failed to open the
VC that the application specified.

int write(int vc, char *buff, int
nbytes)
write() attempts to move up to nbytes of user data
stored in buff to a VC outbound buffer for delivery. If
nbytes is larger than the available space in the outbound
queue, write() returns the number that have actually been
moved. Within the write() function, user data is broken
into ATM cells whose headers contain the appropriate VC
information.

int read(int vc, char *buff, int nbytes)
The read() functions attempts to copy up to nbytes from
the VC inbound queue to the space user specified space,
*buff. If nbytes is larger than the data in the receiv-
ing buffer, read() only returns the actual number of bytes
that can be read from the queue. read() removes the ATM
cell header from each cell in a inbound queue then resembles
them before they are passed to applications.

int ioctl(int vc, int QoS request, long
argument)
The ioctl() function is the key function for QoS rene-
gotiation. Through ioctl(), applications may request
that the system to provide the required bandwidth and
delay over each VC. The parameters implemented for the

QoS negotiation are listed in Table 1. The default values
shown in the table indicate that if the application does not
make any QoS request, UBR service is provided with zero
bandwidth reserved. That is, the best effort service will be
provided. ioctl() may also be invoked during a call, in
case applications need to renegotiate a new QoS contract.

QOS REQUEST ARGUMENT DEFAULT
VC SERVICE ABR,CBR,UBR UBR
VC MIN BW n (Kbps) 0 (Kbps)
VC PREF BW m (Kbps) 0 (Kbps)

VC MAX DELAY d (sec) (sec)

Table 1: ioctl(): parameters

int signal(int QoS SIGNAL, void
*qos handler(int))
The UNIX system call signal() cannot be classified as a
QoS API. However, since it is necessary to have a interface
for the network system to inform applications about the
change in achievable QoS, signal() is selected for this
purpose. The signal() function allows applications to
setup an interrupt handling routine, qos handler(), to
handle the change in QoS. After a QoS handling routine is
used by the application, the system can inform the applica-
tion once it detects a change in radio quality such that a QoS
contract can no longer be supported. Thereafter, instead of
sacrificing the QoS by sending inappropriate traffic into the
network, the applications may adjust their output to adapt to
the current network condition.

int close(int vc)
Contrarily to open(), close() terminates a VC connec-
tion and frees up the I/O queue.

3.2 Mechanism

read() close()open() write() ioctl()
vc_open() vc_read()vc_write() vc_ioctl()

vc_schedule()

INPUTOUTUT

vc_rx()

vc_release()

KERNEL

USER

FAWN HARDWARE

qos_mgr()

qos_table[]

qos_handler()

Fawn Control Unit

Figure 3: Multiple queue driver

Fig. 3 illustrates the system block diagram and the relationship
between user applications and FAWN hardware. The QoS-VC
API acts as an interaction interface between user applications and

hardware. Applications communicate with the QoS mechanism
through this API. A group of priority queues are dynamically al-
located in the kernel space, each of these queues is mapped to an
individual VC (in Fig. 3, only six queues are activated). Once
a VC is opened and its QoS is negotiated through ioctl(),
which interacts with the QoS manager (qos mgr()) for service
and bandwidth specification, the QoS manager translates the re-
quested service type and bandwidth in terms of time slots for car-
rying data cells in each data burst. This information will be kept
in the QoS table (qos table()) that will later be referred by
the VC scheduler (vc schedule()). The QoS manager is also
responsible for monitoring the overall link quality and providing
feedback directly to applications when the requested QoS can not
be satisfied or when a better service is available. This feedback
is implemented through the UNIX signal(), as described in
Section 3.1.

The VC scheduler reads packets from those activated queues
and sends them to the FAWN hardware for transmission. It serves
these multiple queues in a “round-robin” fashion which allows a
control of QoS granularity such that one circuit will not dominate
the data path with a large chunk of data.
3.3 System Functions

QoS reservation and QoS renegotiation are two major goals we
achieve by providing QoS API and VC mechanisms. They are the
keys to providing multimedia traffic support in wireless networks.
The details of how these are implemented are described below.
3.3.1 QoS Reservation Three types of QoS are considered
in the current implementation: service type, bandwidth and de-
lay. The support for each of these service qualities are described
below:

Service Type
Currently, ABR, CBR and UBR are three service types sup-
ported by SWAN through the VC scheduler. Based on the
QoS information stored in QoS table, the VC scheduler com-
putes the necessary service rate to each queue. A prioritized
round-robin scheme allows the VC scheduler in each time
frame to provide sufficient service for all CBR queues first,
then the ABR, and if there is any bandwidth left it will be
used for UBR queues.
It is the QoS manager’s responsibility to make sure that the
total of CBR and ABR queues will not require bandwidth
that exceeds the link capability. This is described next.

Bandwidth Reservation
In SWAN TDD system, the allocated bandwidth can be rep-
resented in terms of the number of time slots devoted to a
connection. For example, a connection granted with one slot
in each data burst is served at the bit rate of 24 Kbps (240
Kbps/ 10 slots) in SWAN TDD scheme.
To reserve bandwidth, the QoS manager converts each band-
width request into the necessary number of time slots to meet
the requirement. If the amount of time slots cannot be allo-
cated, the bandwidth request is rejected.

Delay Control
In SWAN, as the low bandwidth radio communication only

exists between the mobile host and the base station, most of
the communication delay is considered as a combination of
the queueing delay and the radio transmission delay. Since
the radio transmission delay is usually fixed and cannot be
avoided, our work focuses on the control of queueing delay.

The QoS manager determines the queue length based on the
requested delay and the requested bandwidth from user ap-
plications. In short, the longer of the tolerable delay is, the
longer the queue will be. A side effect of this approach is
that packets may be lost internally due to the queue overflow.
Thus, users may need to consider the trade-off between the
packets loss rate and the queueing delay.

3.3.2 QoS Renegotiation As stated in the introduction,
QoS renegotiation is very necessary in a wireless network because
wireless communication is unreliable and many applications do
have the ability to adapt to different network conditions. Thus,
our work proposes a feedback mechanism to informs applications
of the change in QoS. The applications can benefit from this mech-
anism by simply setting up handlers such that when they are noti-
fied of the change in QoS, they could adjust their data rate based
on the latest QoS information.

This proposed feedback mechanism is also implemented in the
QoS manager which has direct access to the radio hardware to
learn the current status of the radio. For example, when the QoS
manager detects the decrease in radio bandwidth, it first reduces
the service to the UBR traffic; if such a reduction is not suffi-
cient to guarantee the requested bandwidth for all ABR and CBR
traffic, it then reduces the ABR/CBR service rate to its minimum
requirement. Finally if the bandwidth is still not sufficient, QoS
manager will prorate the assigned bandwidth on all the CBR and
ABR circuits and signal the corresponding handlers implemented
in the applications to notify the change of QoS. Upon receiving the
signal from the QoS manager, the handler in each application can
decide whether to accept the newly assigned QoS by, for example,
reducing the frame rate or sampling rate etc., or to terminate the
connections, or to renegotiate a new QoS with the QoS manager.

4 Experimental Results
Several multimedia applications have been modified to verify

the performance of our QoS VC scheme. These applications in-
clude a video program that send image frames in a raw data for-
mat (bit map) or compressed video using H.263 [4], as well as
a file transfer program. All these applications display a signif-
icant quality improvement over the original programs that used
interface that provided in traditional network protocol (TCP/IP).
Using these programs, we performed several experiments and we
summarize the results in this section.

4.1 Bandwidth Management
Firstly we study the performance of our QoS VC scheme by

using three different traffic sources: one datagram, d1 and two
videos, v1 and v2. d1 is a packet generator which can generate
data as high as the full link capacity (240 Kbps). It is executed in
the background during the whole experiment to represent a heav-
ily loaded system. v1 is an uncompressed video session which
transmits an uncompressed video snapshot of about 18K bytes

at every 2 seconds (72 Kbps). It starts at time = 15 second and
transmits for a total of 35 frames. V2 is another uncompressed
video session similar to video 1, but the frame rate is doubled (1
frames/sec, about 144 Kbps) and it transmits for 100 frames in
total. In an ideal QoS-guaranteed environment, both v1 and v2
should be granted for 72 Kbps and 144 Kbps, respectively, and d1
should only use the bandwidth that is left available.

Fig. 4 shows the experimental result using the QoS VC scheme.
The lines shown are the bandwidth of each traffic observed at the
receiver. In this figure, we can see that constant bandwidth is re-
served for v1 and v2 which use the CBR service, while d1 uses
all the residual bandwidth since it is designed to use the ABR ser-
vice and will thus be granted for the residual bandwidth in our
experiment. The changes of the bandwidth used by the ABR d1 is
exactly what we expected in a QoS-guaranteed environment.

50

100

150

200

0 20 40 60 80 100 120 140 160 180

Co
ns

um
ed

 b
an

dw
id

th
 p

er
 s

tre
am

(K
bp

s)

Time(sec)

d1(datagram)

v1(video 1)

v2(video 2)

d1
v1
v2

Figure 4: Received bandwidth using VC-QoS

As a comparison, we repeated the same experiment using UDP
which was also developed in [1] and doesn’t provide any QoS
guarantee. The result is shown in Fig. 5. In this figure, we ob-
serve that due to the lack of a QoS mechanism, the amount of
bandwidth that a connection can utilize is related to how aggres-
sive the traffic source is. As v1 generates data at 72 Kbps, it is
less “aggressive” than d1. Therefore between time = 15 and 90
seconds, the quality of v1 suffers by having to compete with d1.
Note v2 is more aggressive (144 Kbps) than v1, thus between the
35th sec. and the 90th sec., the observed bandwidth shows that all
these three sessions get about 1/3 of the bandwidth (v1 is in fact
slightly less than the other two). When v1 stops at the 90th second,
video 2 and d1 both get half of the bandwidth. In this experiment,
none of the video sessions get the bandwidth they require, and
both of them suffer from fluctuations in bandwidth that they get.
Note that the fluctuation between time = 15 sec. and 35 sec. is
more significant than that between time = 90 sec. and 150 sec.
This is because v1 transmits video frame slower (0.5 frame/sec)
and tends to fall behind the competition with d1. However v2
transmits video in a faster pace (1 frame/sec), so it can share the
bandwidth with d1 more competitively. Moreover, the decrease
in observed maximum bandwidth in this experiment (220 Kbps)
comparing with the previous one (240 Kbps) in QoS VC scheme
is due to the overhead in UDP/IP headers.

It is observed that since the bandwidth provided to the two

50

100

150

200

0 20 40 60 80 100 120 140 160 180

Co
ns

um
ed

 b
an

dw
id

th
 p

er
 s

tre
am

(K
bp

s)

Time(sec)

d1(datagram)

v1(video 1)

v2(video 2)

d1
v1
v2

Figure 5: Received bandwidth using UDP

video sessions are less than expected, the durations for both video
sessions in Fig 5 are longer than those in Fig 4. This is caused
by the delay of the lower, fluctuating bandwidth obtained by both
sessions.
4.2 Delay Jitter Control

To study the impact of QoS on a multimedia session, we exam-
ine the distribution of inter-frame delay of a video session. The
traffic under study is also an uncompressed video source, which
transmits a bitmap video frame of 19K bytes every 1.2 seconds for
a total of 500 frames. We measure the inter arrival time between
each frame at the receiver end. The results are depicted in Fig. 6
through Fig. 9 and summarized in Table 2. The background traffic
is the datagram program similar to what we used in the previous
experiments, however, it generates data at the rate of 110 Kbps
such that the total bandwidth is within the given link capacity.
The results are as expected: under the QoS VC scheme, the delay
jitter is well controlled even in the presence of the existence of the
background traffic. On the other hand, using the UDP protocol ex-
periences a completely different result. Its video source has a de-
cent delay variance of 0.064. when there is no background traffic;
but when it comes to the existence of background traffic, the de-
lay variance doubles and becomes unpredictable. We see the UDP
(with no QoS) posts severe delay jitter problems in heavy traffic
situation. Our QoS VC mechanism, on the other hand, is stable
and efficient. Regardless to the network total load, it only intro-
duces 2.6% more in delay overhead compared with UDP scheme
without any load.

Protocol QoS-VC UDP(no QoS)
Background traffic Yes No Yes No
Mean delay (sec) 1.224 1.224 1.474 1.193
Variance 0.056 0.056 0.112 0.064

Table 2: Summary of Delay Jitter

5 Conclusions and Future Work
In this paper, we propose a kernel level mechanism that pro-

vides applications with a direct QoS feedback from the radio link.

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5 2 2.5 3

Fr
am

e
Co

un
t

Inter Frame Time(sec)

Uncompressed Movie

Figure 6: Delay distribution in QoS-VC without background load

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5 2 2.5 3

Fr
am

e
Co

un
t

Inter Frame Time(sec)

Uncompressed Movie

Figure 7: Delay distribution in QoS-VC with background load

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5 2 2.5 3

Fr
am

e
Co

un
t

Inter Frame Time(sec)

Uncompressed Movie

Figure 8: Delay distribution in UDP without background load

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5 2 2.5 3

Fr
am

e
Co

un
t

Inter Frame Time(sec)

Uncompressed Movie

Figure 9: Delay distribition in UDP with background load

This mechanism negotiates and guarantees the service level when
radio link is stable. When the link quality changes and the re-
quested QoS cannot be satisfied, it informs applications directly
through a feedback signal. Therefore, instead of an inadequate
performance due to insufficient and varying link quality, the traf-
fic source has a chance to adjust and best utilize the changing link
quality without dropping the connection. We are now investigat-
ing the support for the interfacing with QoS signaling from wired
network such as wired ATM. The application of our proposed QoS
scheme to other wireless systems based on different MAC proto-
cols like IEEE 802.11 is also being evaluated.

References
[1] P. Agrawal et al., “SWAN: A Mobile Multimedia Wireless

Network,” in IEEE Personal Communications, Apr. 1996.
pp. 18-33.

[2] T.-W. Chen et al.,“Renegotiable Quality of Service – A New
Scheme for Fault Tolerance in Wireless Networks,” in FTCS-
27, Jun. 1997.

[3] R. Frederick, “Experiences with Real-time Software
Video Compression” at ftp://ftp.parc.xerox.com/pub/net-
research/nv-paper.ps, Jul. 1994.

[4] ITU-T “Recommendation H.263: Video Cod-
ing For Low Bitrate Communication,” available at
http://www.fou.telenor.no/brukere/DVC/h263 wht/.

[5] R. Schneiderman,Wireless Personal Communications, IEEE
Press, 1994.

[6] C.J. Sreenan and P.P. Mishra, “Equus: A QoS Manager for
Distributed Applications,” in Distributed Platforms, Editors
A. Schill et al. Publishers Chapman & Hall,1996, pp 496-
509.

[7] J. Trotter and M. Cravatts, ”A Wireless Adapter Architec-
ture for Mobile Computing,” in Proc. 2nd USENIX Symp.
on Mobile and Location-Independent Comp., Apr. 1994, pp.
25-31.

