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Key concepts we covered

• Symmetric Cryptography
– Encrypt and decrypt data using a shared secret key
– Example algorithms: AES, ChaCha20

• Public Key Cryptography (Asymmetric Cryptography)
– Two related keys: public & private
– Encrypt with a public key; decrypt with the private key
– Encrypt with your private key; decrypt with a public key
– Example algorithms: RSA, Elliptic Curve Cryptography

• Hash function
– Maps input data to a fixed-length digest in a way that is hard to reverse
– Example algorithms: SHA-2 (SHA-256, SHA-512, …), SHA-3



Key concepts we covered

• Message Authentication Code (MAC)
– A hash of a {message + secret key}
– Only someone who knows the secret can create or verify the MAC
– Example algorithms: HMAC, CBC-MAC

• Digital Signature
– A hash encrypted with a private key
– Only the owner of the private key can create this
– Anybody can verify it with the user’s public key.
– Example algorithms: SHA-2+RSA, SHA-2+ECC, SHA-2+DSA, …

• Diffie-Hellman Key Exchange (DHKE)
– A special-purpose public key algorithm that allows two parties to compute a common key
– Very quick for key generation.



Key concepts we covered

• Forward Secrecy
– There is no secret that someone can steal to allow them to decrypt all your past communication 

sessions
– Accomplished by creating unique Diffie-Hellman public keys for each session and then using 

those to derive any keys we need to communicate

• Categories of keys
– Long-term key: public-private keys – usually bound to an identity and used for a long time
– Session key: symmetric key used to encrypt data for one communication session
– Ephemeral key: very short-term key used at the start of a session to set up the session key(s)

• Digital Certificate (X.509 Certificate)
– A standard for storing an identity and its public key
– Contains a digital signature of the company that certified the identity



X.509 Certificates (Digital Certificates)

If you get Alice’s public key, how do you know it belongs to Alice?

• An X.509 certificate contains an identity and the public key

• It contains:
1. Subject: who the certificate is issued to (Alice, bankofamerica.com, etc.)
2. Public key: The subject’s public key that can be used to
3. Issuer: the Certificate Authority (CA) that is responsible for verifying the identity of the subject 

and creating the certificate
4. Validity period: start & expiration dates of the certificate
5. Digital signature: the CA’s signature to validate that the certificate data isn’t modified
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Example Certificates (via the Chrome browser)
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Issued to bankofamerica.com

Issued by DigiCert (this is the CA)

Expires September 2026

Expires September 2026
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Secure Communication with TLS



Why Protocols Matter

• We know know how to do
– Public key cryptography
– Digital signatures
– Hashes
– Symmetric cryptography

• How do two strangers really set up a secure connection?



Transport Layer Security (TLS)

Goal: provide a transport layer security protocol

After setup, applications feel like they are using TCP sockets

• TLS was originally called SSL (Secure Socket Layer)

• It was designed with the web (HTTP) in mind but is used for HTTPS, 
email, VPNs, and other protocols



Protocols

• Protocols are instructions that describe a sequence of operations

• Each step has a purpose:
– Authenticate, agree on keys, prevent tampering, …
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We will look at the latest version of TLS (1.3) –
the high-level steps but not every detail



The basics of setting up a secure channel

The key steps in setting up a secure communication channel:

• Authentication: the client knows it’s talking to the real server

• Confidentiality: traffic is encrypted with symmetric keys

• Integrity: traffic cannot be tampered with silently

• Forward secrecy (optional goal): old traffic remains safe even if long-term 
keys are later stolen
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Useful components

• TLS uses:
– Diffie-Hellman: to generate an initial shared secret
– Digital certificates: for the server to prove its identity

(so you know you’re connecting to bankofamerica.com)
– Public key cryptography: to validate the certificate
– HMAC: hash-based MAC for message integrity to prove we know the shared secret
– Symmetric cryptography: to encrypt data going back and forth

• It also relies on:
– AEAD (Authenticated Encryption with Associated Data)
– HKDF (HMAC-based Key Derivation Function)



AEAD: Combine Confidentiality + Integrity

AEAD: Authenticated Encryption with Associated Data = encryption + MAC

• Algorithm that combines encryption with message authentication

• Avoids having to scan the message twice: once for encrypting and again for hashing

• Examples
– AES-GCM (AES – Galois Counter Mode), ChaCha20-Poly1305
• Both produce a 16-byte authentication tag in addition to the encrypted message
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TLS 1.3 Key Derivation

• Both sides have a common key after the handshake
– Use that to create all the keys we need – client and server can derive the same sets

• HKDF - HMAC-based Extract-and-Expand Key Derivation Function (RFC5869)
– Specification to create any # of keys starting from one secret key
– It uses an initialization function and then HMAC hashing to create additional keys

• Key Derivation Function
– Initialization: Extracts a fixed-length pseudorandom key, PRK, from the initial secret:

  PRK = hash(non-secret-salt, key)
– Key derivation: Expands K into any number of additional keys

 Key0 = null
 Keyn = HMAC(PRK, Keyn-1, n)
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TLS 1.3 Handshake Walkthrough



Step 1. ClientHello

• The client connects to the server and sends:
– A list of cipher and key exchange algorithms that it supports
– An ephemeral Diffie-Hellman public key that it just created
– A 32-byte random value
• This ensures every session is unique, even if the client & server talk twice
• It will be mixed into the key derivation process for the session key
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• Cipher suite: algorithms/modes
• Diffie-Hellman public key
• Client random value (32-bytes)
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Step 2. ServerHello

• The server responds:
– The chosen set of algorithms from the list sent by the client
– An ephemeral Diffie-Hellman public key that it just created
– A 32-byte random value created by the server
• Both the client & server random values will be used as input to the key generator
• This ensures that keys will be different even if the same Diffie-Hellman keys were accidentally 

used
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• Choice of cipher suite
• Diffie-Hellman public key
• Server random value
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After Step 2

• Each side now has the other side’s Diffie-Hellman public key
– Compute the shared Diffie-Hellman secret (common key)

• Using a key derivation function (HKDF), both sides combine:
– The DH secret
– The client random
– The server random
– handshake transcript: a running hash of all handshake messages

The key derivation function is a pseudorandom number generator that can generate 
as many keys as you need
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Client Server
1. ClientHello

2. ServerHello



Step 3. Certificate

• The server sends its digital certificate
– This contains:
• The server’s identity (e.g., the domain name that the client can compare)
• The server’s public key (this is the server’s long-term key)
• The signature of the certificate authority (CA) that will allow the client to verify the certificate
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Server’s X.509 certificate
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Step 4. Certificate Verify

• The server proves that it has the private key for the public key that was 
in the certificate it sent
– The handshake transcript is a hash of all the messages sent and received so far
– Server signs the handshake transcript with its private key

(encrypts the hash with whatever algorithm its private key is associated with)
– Prevents an attacker from replaying or combining messages
• The signature is a function of all messages sent so far
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Step 5. Finished (Client)

• The client sends a Finished MAC 
– HMAC algorithm is used = SHA-256 or SHA-384 hash = hash(key, data)
– Input to the hash is:
• Transcript hash = hash of all handshake messages up to this point
• Finished key = from the HKDF – derived from the shared secret
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Step 6. Finished (Server)

• The server verifies the client’s Finished message
– Computes an HMAC(finished_key, transcript_hash)
– It uses the same key derivation function (HKDF) and can generate the same key
– It saw the same messages, so it has the same transcript_hash
– If the HMAC matches then the server is convinced that:
• This message is part of the session
• The client knows the shared secret (that was used to set up HKDF)

• The server computes the Finished HMAC and sends it to the client
– The HMAC input is different because the transcript hash has been updated
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After Step 6. Application Data

• The client verifies the Finished HMAC it received from the server

• Both sides know:
– The handshake has not been tampered with
– Both sides have the same cryptographic state (same initial key)

• Now we’re ready to send data back and forth!

• Both sides switch to symmetric encryption
– Each side uses HKDF to get two different session keys: 

1. A key for client-to-server encryption
2. A key for server-to-client encryption
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TLS 1.3 Protocol Summary
Client Server

ClientHello
[ephemeral D-H key, random #, algorithms]

ServerHello
[chosen algs, ephemeral D-H key, random #]

Server Certificate
[identity, public key, CA signature]

CertificateVerify
[signature(handshake)]

Finished
[MAC over handshake transcript]

Finished
[MAC over handshake transcript]

Data
[AES-GCM, ChaCha20-Poly1305]

Diffie-Hellman

Random # gen

RSA public keys

HMAC

RSA public keys

Symmetric 
cryptography

Digital 
signatures



Summary

• There are more details to TLS
– Different cipher suites might use HMAC instead of AEAD
– There’s a protocol for restarting broken connections efficiently
– The protocol can request clients and server to update keys during the session

• This protocol combines many of the components we studied
– Symmetric cryptography
– Public key cryptography
– Hash functions
– Digital signatures
– Message authentication codes
– Random number generation
– Diffie-Hellman key exchange
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The End
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