
This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

CS 419: Computer Security

Week 3: Recitation
 Transport Layer Security (TLS)

© 2025 Paul Krzyzanowski. No part of this
content, may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Key concepts we covered

• Symmetric Cryptography
– Encrypt and decrypt data using a shared secret key
– Example algorithms: AES, ChaCha20

• Public Key Cryptography (Asymmetric Cryptography)
– Two related keys: public & private
– Encrypt with a public key; decrypt with the private key
– Encrypt with your private key; decrypt with a public key
– Example algorithms: RSA, Elliptic Curve Cryptography

• Hash function
– Maps input data to a fixed-length digest in a way that is hard to reverse
– Example algorithms: SHA-2 (SHA-256, SHA-512, …), SHA-3

Key concepts we covered

• Message Authentication Code (MAC)
– A hash of a {message + secret key}
– Only someone who knows the secret can create or verify the MAC
– Example algorithms: HMAC, CBC-MAC

• Digital Signature
– A hash encrypted with a private key
– Only the owner of the private key can create this
– Anybody can verify it with the user’s public key.
– Example algorithms: SHA-2+RSA, SHA-2+ECC, SHA-2+DSA, …

• Diffie-Hellman Key Exchange (DHKE)
– A special-purpose public key algorithm that allows two parties to compute a common key
– Very quick for key generation.

Key concepts we covered

• Forward Secrecy
– There is no secret that someone can steal to allow them to decrypt all your past communication

sessions
– Accomplished by creating unique Diffie-Hellman public keys for each session and then using

those to derive any keys we need to communicate

• Categories of keys
– Long-term key: public-private keys – usually bound to an identity and used for a long time
– Session key: symmetric key used to encrypt data for one communication session
– Ephemeral key: very short-term key used at the start of a session to set up the session key(s)

• Digital Certificate (X.509 Certificate)
– A standard for storing an identity and its public key
– Contains a digital signature of the company that certified the identity

X.509 Certificates (Digital Certificates)

If you get Alice’s public key, how do you know it belongs to Alice?

• An X.509 certificate contains an identity and the public key

• It contains:
1. Subject: who the certificate is issued to (Alice, bankofamerica.com, etc.)
2. Public key: The subject’s public key that can be used to
3. Issuer: the Certificate Authority (CA) that is responsible for verifying the identity of the subject

and creating the certificate
4. Validity period: start & expiration dates of the certificate
5. Digital signature: the CA’s signature to validate that the certificate data isn’t modified

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 5

Example Certificates (via the Chrome browser)

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 6

Issued to bankofamerica.com

Issued by DigiCert (this is the CA)

Expires September 2026

Expires September 2026

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 7

Secure Communication with TLS

Why Protocols Matter

• We know know how to do
– Public key cryptography
– Digital signatures
– Hashes
– Symmetric cryptography

• How do two strangers really set up a secure connection?

Transport Layer Security (TLS)

Goal: provide a transport layer security protocol

After setup, applications feel like they are using TCP sockets

• TLS was originally called SSL (Secure Socket Layer)

• It was designed with the web (HTTP) in mind but is used for HTTPS,
email, VPNs, and other protocols

Protocols

• Protocols are instructions that describe a sequence of operations

• Each step has a purpose:
– Authenticate, agree on keys, prevent tampering, …

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 10

We will look at the latest version of TLS (1.3) –
the high-level steps but not every detail

The basics of setting up a secure channel

The key steps in setting up a secure communication channel:

• Authentication: the client knows it’s talking to the real server

• Confidentiality: traffic is encrypted with symmetric keys

• Integrity: traffic cannot be tampered with silently

• Forward secrecy (optional goal): old traffic remains safe even if long-term
keys are later stolen

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 11

Useful components

• TLS uses:
– Diffie-Hellman: to generate an initial shared secret
– Digital certificates: for the server to prove its identity

(so you know you’re connecting to bankofamerica.com)
– Public key cryptography: to validate the certificate
– HMAC: hash-based MAC for message integrity to prove we know the shared secret
– Symmetric cryptography: to encrypt data going back and forth

• It also relies on:
– AEAD (Authenticated Encryption with Associated Data)
– HKDF (HMAC-based Key Derivation Function)

AEAD: Combine Confidentiality + Integrity

AEAD: Authenticated Encryption with Associated Data = encryption + MAC

• Algorithm that combines encryption with message authentication

• Avoids having to scan the message twice: once for encrypting and again for hashing

• Examples
– AES-GCM (AES – Galois Counter Mode), ChaCha20-Poly1305
• Both produce a 16-byte authentication tag in addition to the encrypted message

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 13

TLS 1.3 Key Derivation

• Both sides have a common key after the handshake
– Use that to create all the keys we need – client and server can derive the same sets

• HKDF - HMAC-based Extract-and-Expand Key Derivation Function (RFC5869)
– Specification to create any # of keys starting from one secret key
– It uses an initialization function and then HMAC hashing to create additional keys

• Key Derivation Function
– Initialization: Extracts a fixed-length pseudorandom key, PRK, from the initial secret:

 PRK = hash(non-secret-salt, key)
– Key derivation: Expands K into any number of additional keys

 Key0 = null
 Keyn = HMAC(PRK, Keyn-1, n)

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 14

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 15

TLS 1.3 Handshake Walkthrough

Step 1. ClientHello

• The client connects to the server and sends:
– A list of cipher and key exchange algorithms that it supports
– An ephemeral Diffie-Hellman public key that it just created
– A 32-byte random value
• This ensures every session is unique, even if the client & server talk twice
• It will be mixed into the key derivation process for the session key

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 16

• Cipher suite: algorithms/modes
• Diffie-Hellman public key
• Client random value (32-bytes)

Server

C
lie

nt

Step 2. ServerHello

• The server responds:
– The chosen set of algorithms from the list sent by the client
– An ephemeral Diffie-Hellman public key that it just created
– A 32-byte random value created by the server
• Both the client & server random values will be used as input to the key generator
• This ensures that keys will be different even if the same Diffie-Hellman keys were accidentally

used

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 17

• Choice of cipher suite
• Diffie-Hellman public key
• Server random value

Client

Se
rv

er

After Step 2

• Each side now has the other side’s Diffie-Hellman public key
– Compute the shared Diffie-Hellman secret (common key)

• Using a key derivation function (HKDF), both sides combine:
– The DH secret
– The client random
– The server random
– handshake transcript: a running hash of all handshake messages

The key derivation function is a pseudorandom number generator that can generate
as many keys as you need
September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 18

Client Server
1. ClientHello

2. ServerHello

Step 3. Certificate

• The server sends its digital certificate
– This contains:
• The server’s identity (e.g., the domain name that the client can compare)
• The server’s public key (this is the server’s long-term key)
• The signature of the certificate authority (CA) that will allow the client to verify the certificate

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 19

Server’s X.509 certificate
(name, public key, signed by CA)Client

Se
rv

er

Step 4. Certificate Verify

• The server proves that it has the private key for the public key that was
in the certificate it sent
– The handshake transcript is a hash of all the messages sent and received so far
– Server signs the handshake transcript with its private key

(encrypts the hash with whatever algorithm its private key is associated with)
– Prevents an attacker from replaying or combining messages
• The signature is a function of all messages sent so far

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 20

Encrypt handshake transcript with server’s private keyClient

Se
rv

er

Step 5. Finished (Client)

• The client sends a Finished MAC
– HMAC algorithm is used = SHA-256 or SHA-384 hash = hash(key, data)
– Input to the hash is:
• Transcript hash = hash of all handshake messages up to this point
• Finished key = from the HKDF – derived from the shared secret

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 21

HMAC(finished_key, transcript hash) Server

C
lie

nt

Step 6. Finished (Server)

• The server verifies the client’s Finished message
– Computes an HMAC(finished_key, transcript_hash)
– It uses the same key derivation function (HKDF) and can generate the same key
– It saw the same messages, so it has the same transcript_hash
– If the HMAC matches then the server is convinced that:
• This message is part of the session
• The client knows the shared secret (that was used to set up HKDF)

• The server computes the Finished HMAC and sends it to the client
– The HMAC input is different because the transcript hash has been updated

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 22

Client

Se
rv

er

HMAC(finished_key, transcript hash)

After Step 6. Application Data

• The client verifies the Finished HMAC it received from the server

• Both sides know:
– The handshake has not been tampered with
– Both sides have the same cryptographic state (same initial key)

• Now we’re ready to send data back and forth!

• Both sides switch to symmetric encryption
– Each side uses HKDF to get two different session keys:

1. A key for client-to-server encryption
2. A key for server-to-client encryption

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 23

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 24

TLS 1.3 Protocol Summary
Client Server

ClientHello
[ephemeral D-H key, random #, algorithms]

ServerHello
[chosen algs, ephemeral D-H key, random #]

Server Certificate
[identity, public key, CA signature]

CertificateVerify
[signature(handshake)]

Finished
[MAC over handshake transcript]

Finished
[MAC over handshake transcript]

Data
[AES-GCM, ChaCha20-Poly1305]

Diffie-Hellman

Random # gen

RSA public keys

HMAC

RSA public keys

Symmetric
cryptography

Digital
signatures

Summary

• There are more details to TLS
– Different cipher suites might use HMAC instead of AEAD
– There’s a protocol for restarting broken connections efficiently
– The protocol can request clients and server to update keys during the session

• This protocol combines many of the components we studied
– Symmetric cryptography
– Public key cryptography
– Hash functions
– Digital signatures
– Message authentication codes
– Random number generation
– Diffie-Hellman key exchange

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 25

The End

September 24, 2025 26CS 419 © 2025 Paul Krzyzanowski

