.....

y ’
=

T

g4

A 2. VTS,

Week 3: Recitation - . NG, |
: : "\“\ ' . V% it / A >

T%ns '

..... I

CS419: Comp,ut?‘t!f{?:f..'.sf‘(ék

.......
o

’ / L
Z AT, 3 - T
SO0 N / % %
© 2025 Paul Kizyzanowski, No part of this

conten‘{,m:ay be reproduced or reposled in
whole or in part in-any manner without the »*
permission of the copyright owner.

A [-

%

. Ll ...’-.'vi
N =

3 5 7 \"’;ﬁ“
- NAR

Key concepts we covered

« Symmetric Cryptography
— Encrypt and decrypt data using a shared secret key
— Example algorithms: AES, ChaCha20

* Public Key Cryptography (Asymmetric Cryptography)
— Two related keys: public & private
— Encrypt with a public key; decrypt with the private key
— Encrypt with your private key; decrypt with a public key
— Example algorithms: RSA, Elliptic Curve Cryptography

e Hash function

— Maps input data to a fixed-length digest in a way that is hard to reverse
— Example algorithms: SHA-2 (SHA-256, SHA-512, ...), SHA-3

Key concepts we covered

* Message Authentication Code (MAC)
— A hash of a{message + secret key}

— Only someone who knows the secret can create or verify the MAC
— Example algorithms: HMAC, CBC-MAC

* Digital Signature
— A hash encrypted with a private key
— Only the owner of the private key can create this
— Anybody can verify it with the user’s public key.
— Example algorithms: SHA-2+RSA, SHA-2+ECC, SHA-2+DSA, ...

* Diffie-Hellman Key Exchange (DHKE)

— A special-purpose public key algorithm that allows two parties to compute a common key
— Very quick for key generation.

Key concepts we covered

* Forward Secrecy

— Thereis no secret that someone can steal to allow them to decrypt all your past communication
sessions

— Accomplished by creating unique Diffie-Hellman public keys for each session and then using
those to derive any keys we need to communicate

* Categories of keys
— Long-term key: public-private keys — usually bound to an identity and used for a long time
— Session key: symmetric key used to encrypt data for one communication session
— Ephemeral key: very short-term key used at the start of a session to set up the session key(s)

* Digital Certificate (X.509 Certificate)
— A standard for storing an identity and its public key
— Contains a digital signature of the company that certified the identity

X.509 Certificates (Digital Certificates)

If you get Alice’s public key, how do you know it belongs to Alice?

* An X.509 certificate contains an identity and the public key

* |t contains:

1.
2.
3.

Subject: who the certificate is issued to (Alice, bankofamerica.com, etc.)
Public key: The subject’s public key that can be used to

Issuer: the Certificate Authority (CA) that is responsible for verifying the identity of the subject
and creating the certificate

Validity period: start & expiration dates of the certificate
Digital signature: the CA’s signature to validate that the certificate data isn’t modified

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 5

Example Certificates (via the Chrome browser)

Certificate Viewer: www.bankofamerica.com X Certificate Viewer: www.cia.gov X
General Details General Details
Issued To - fssued To
Common Name (CN) www.bankofamerica.com Common Name (CN) www.cia.gov
Organization (0) Bank of America Corporation Organization (O) Central Intelligence Agency
Organizational Unit (OU) <Not Part Of Certificate> Organizational Unit (OU) <Not Part Of Certificate>
Issued By - fssved By
Common Name (CN) DigiCert EV RSA CA G2 Common Name (CN) DigiCert Global G3 TLS ECC SHA384 2020 CA1
Organization (0) DigiCert Inc 0] 2Ll

Organizational Unit (OU) <Not Part Of Certificate> OfganizationallUnit(OLapsiotRartOfiCertincates

Valldlty Period - valld“'y Period

| 40 Tuesday. A £12 2025 at 8:00:00 PM Issued On Tuesday, August 12, 2025 at 8:00:00 PM
ey i uesday, August 1z, CLGALLS Expires On Wednesday, August 12, 2026 at 7:59:59 PM
Expires On Sunday, September 13, 2026 at 7:59:59PM
SHA-256
SHA-256 Fingerprints
Fingerprints
Certificate cabf3706f4e5738d279d1fab94d5¢ch223cbb6ec2ef0846a42147
Certificate 103e18509f5b97ba92b17a5f0538236df075¢3368c940070a99d 926becd8ce16
d05cad2c961f Public Key 862b0d87901f8adcc38ce95a20219553d2340c5459¢3278b96d
Public Key be50e83a03144c9f7854c5d70c38ae891efa7919ce55d91866a6 55744b4f9f725
2ea596¢d7610

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 6

Secure Communication with TLS

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 7

Why Protocols Matter

* We know know how to do
— Public key cryptography
— Digital signatures
— Hashes
— Symmetric cryptography

* How do two strangers really set up a secure connection?

Transport Layer Security (TLS)

Goal: provide a transport layer security protocol
After setup, applications feel like they are using TCP sockets
* TLS was originally called SSL (Secure Socket Layer)

* It was designhed with the web (HTTP) in mind but is used for HTTPS,
email, VPNs, and other protocols

* Protocols are instructions that describe a sequence of operations

 Each step has a purpose:

— Authenticate, agree on keys, prevent tampering, ...

We will look at the latest version of TLS (1.3) -
the high-level steps but not every detail

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 10

The basics of setting up a secure channel

The key steps in setting up a secure communication channel:
* Authentication: the client knows it’s talking to the real server

* Confidentiality: traffic is encrypted with symmetric keys

* Integrity: traffic cannot be tampered with silently

* Forward secrecy (optional goal): old traffic remains safe even if long-term
keys are later stolen

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 1

Useful components

* TLS uses:
— Diffie-Hellman: to generate an initial shared secret

— Digital certificates: for the server to prove its identity
(so you know you’re connecting to bankofamerica.com)

— Public key cryptography: to validate the certificate
— HMAC: hash-based MAC for message integrity to prove we know the shared secret
— Symmetric cryptography: to encrypt data going back and forth

* It also relies on:
— AEAD (Authenticated Encryption with Associated Data)
— HKDF (HMAC-based Key Derivation Function)

AEAD: Combine Confidentiality + Integrity

AEAD: Authenticated Encryption with Associated Data = encryption + MAC
* Algorithm that combines encryption with message authentication

* Avoids having to scan the message twice: once for encrypting and again for hashing

* Examples

— AES-GCM (AES - Galois Counter Mode), ChaCha20-Poly1305
* Both produce a 16-byte authentication tag in addition to the encrypted message

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 13

TLS 1.3 Key Derivation

* Both sides have a common key after the handshake
— Use that to create all the keys we need - client and server can derive the same sets

* HKDF - HMAC-based Extract-and-Expand Key Derivation Function (RFC5869)

— Specification to create any # of keys starting from one secret key
— It uses aninitialization function and then HMAC hashing to create additional keys

* Key Derivation Function

— Initialization: Extracts a fixed-length pseudorandom key, PRK, from the initial secret:
PRK = hash(non-secret-salt, key)

— Key derivation: Expands K into any number of additional keys
Key, = null
Key,=HMAC(PRK, Key,_., n)

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 14

TLS 1.3 Handshake Walkthrough

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 15

Step 1. ClientHello

* Cipher suite: algorithms/modes
e Diffie-Hellman public key

* Clientrandom value (32-bytes)

Client

Server

* The client connects to the server and sends:

— Alist of cipher and key exchange algorithms that it supports

— An ephemeral Diffie-Hellman public key that it just created
— A 32-byte random value

* This ensures every session is unique, even if the client & server talk twice
* [t will be mixed into the key derivation process for the session key

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 16

Step 2. ServerHello

e Choice of cipher suite
* Diffie-Hellman public key
e Server random value

Client

Server

* The server responds:
— The chosen set of algorithms from the list sent by the client
— An ephemeral Diffie-Hellman public key that it just created

— A 32-byte random value created by the server
* Both the client & server random values will be used as input to the key generator

* This ensures that keys will be different even if the same Diffie-Hellman keys were accidentally
used

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 17

After Step 2

Client Server
1. ClientHello >

A

2. ServerHello

* Each side now has the other side’s Diffie-Hellman public key
— Compute the shared Diffie-Hellman secret (common key)

* Using a key derivation function (HKDF), both sides combine:
— The DH secret
— The client random
— The server random
— handshake transcript: a running hash of all handshake messages

The key derivation function is a pseudorandom number generator that can generate
as many keys as you need

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 18

Step 3. Certificate

Server’s X.509 certificate

Client (name, public key, signed by CA)

Server

* The server sends its digital certificate
— This contains:
* The server’s identity (e.g., the domain name that the client can compare)

* The server’s public key (this is the server’s long-term key)
* The signature of the certificate authority (CA) that will allow the client to verify the certificate

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 19

Step 4. Certificate Verify

Client Encrypt handshake transcript with server’s private key

Server

* The server proves that it has the private key for the public key that was
in the certificate it sent
— The handshake transcript is a hash of all the messages sent and received so far

— Server signs the handshake transcript with its private key
(encrypts the hash with whatever algorithm its private key is associated with)

— Prevents an attacker from replaying or combining messages

* The signature is a function of all messages sent so far

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 20

Step 5. Finished (Client)

HMAC(finished_key, transcript hash) Server

Client

* The client sends a Finished MAC

— HMAC algorithm is used = SHA-256 or SHA-384 hash = hash(key, data)

— Input to the hashis:
* Transcript hash = hash of all handshake messages up to this point
* Finished key = from the HKDF — derived from the shared secret

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 21

Step 6. Finished (Server)

Client HMAC(finished_key, transcript hash)

Server

* The server verifies the client’s Finished message
— Computes an HMAC(finished_key, transcript_hash)
— It uses the same key derivation function (HKDF) and can generate the same key
— It saw the same messages, so it has the same transcript_hash

— If the HMAC matches then the server is convinced that:
* This message is part of the session
* The client knows the shared secret (that was used to set up HKDF)

* The server computes the Finished HMAC and sends it to the client
— The HMAC input is different because the transcript hash has been updated

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 22

After Step 6. Application Data

* The client verifies the Finished HMAC it received from the server

* Both sides know:
— The handshake has not been tampered with
— Both sides have the same cryptographic state (same initial key)

* Now we’re ready to send data back and forth!

* Both sides switch to symmetric encryption

— Each side uses HKDF to get two different session keys:
1. Akey for client-to-server encryption
2. Akey for server-to-client encryption

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 23

TLS 1.3 Protocol Summary

Client

September 24, 2025

A

ClientHello
[ephemeral D-H key, random #, algorithms]

Server

A

ServerHello
[chosen algs, ephemeral D-H key, random #]

»
»

Server Certificate
[identity, public key, CA signature]

A

CertificateVerify
[signature(handshake)]

A

Finished
[MAC over handshake transcript]

A

Finished
[MAC over handshake transcript]

\ 4

Data
[AES-GCM, ChaCha20-Poly1305]

CS 419 © 2025 Paul Krzyzanowski

Diffie-Hellman

Random # gen

Digital
signatures

RSA public keys

HMAC

RSA public keys

Symmetric
cryptography

24

* There are more details to TLS

— Different cipher suites might use HMAC instead of AEAD
— There’s a protocol for restarting broken connections efficiently
— The protocol can request clients and server to update keys during the session

* This protocol combines many of the components we studied
— Symmetric cryptography
— Public key cryptography
— Hash functions
— Digital signatures
— Message authentication codes
— Random number generation
— Diffie-Hellman key exchange

September 24, 2025 CS 419 © 2025 Paul Krzyzanowski 25

The End

September 24, 2025

CS 419 © 2025 Paul Krzyzanowski

26

