
CS 419: Computer Security

Week 11: Recitation
 Third-Party Authorization: OAuth

© 2025 Paul Krzyzanowski. No part of this
content, may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

The Problem

I don’t want to give an application my Google account login and password
just so the application can access my contacts
– Because then it can access my email, calendar, photos, etc.

Can we provide a way for one application to access services from another
(possibly run by a different company) without users having to share their login
credentials?

November 22, 2025 CS 419 © 2025 Paul Krzyzanowski 2

What is OAuth 2?

An authorization framework to allow a user to give an
application limited access to resources on another service
OAuth is Open Authorization – not authentication
– Authentication: validate your identity
– Authorization: provide access to requested resources

It allows users to authorize access to specific data for a limited time without
sharing login credentials

Designed to work over HTTP

November 22, 2025 CS 419 © 2025 Paul Krzyzanowski 3

The Main Ideas: Redirection and Access Tokens

Redirection
Redirect users to an authorization service so they can approve access requests.
After that, redirect the request back to the service that wants the access

Access token: a small piece of data that contains information about:
– The user
– The resource the token is for
– Rules for data sharing
– Generated by the authorization service and then sent to set up a

session between the client and the service that has the data (APIs)
that the client wants to access

November 22, 2025 CS 419 © 2025 Paul Krzyzanowski 4

Sample Interaction

• I want to access midjourney.com
(an AI image generation service)

• Midjourney:
– Wants to access my Discord information
– Sends me to Discord's authorization service:

 discord.com/oauth2/authorize

• Discord:
– Presents me with information telling me:
• Discord wants access to certain data and interfaces
• An itemized list of what it wants

– If I approve, Discord redirects back to Midjourney

• Midjourney gets an access token as a response

November 22, 2025 CS 419 © 2025 Paul Krzyzanowski 5

Oauth Example: Participants

November 22, 2025 CS 419 © 2025 Paul Krzyzanowski 6

Client
Resource owner
The user who owns
the data and grants
permission

The key players:

Client
The application
requesting access

Authorization
Server

Authorization Server
System that authenticates
the user and issues access
tokens

Resource
Server

Resource Server
Service that holds
the user’s data

The Setup

Before an application (client) can request access tokens from an OAuth server, it needs to
register with it
– Example: a note-taking app registers with the Google OAuth service

• The application provides information
– Application name, type (mobile, web, desktop)
– Homepage URL
– Redirect URI (callback URL to receive the authorization code)
– List of permissions (called scopes) that it will request from users (e.g., “access contacts”, "access username")

• The OAuth server provides:
– A unique Client ID: 123456789.apps.googleusercontent.com
– A client secret between the OAuth server & client: GOCSPX-randomlyGeneratedSecret

Setting up a client ID & shared secret ensures that only the registered client will be allowed to
exchange an authorization code for an access token

November 22, 2025 CS 419 © 2025 Paul Krzyzanowski 7

Step 1: User initiates login

Example: a user wants to sign in to an online note-taking app using their
Google account

• User clicks “sign in with Google” on the note-taking app

November 22, 2025 CS 419 © 2025 Paul Krzyzanowski 8

Client

Note-taking app

Step 2: Redirect to Authorization Server

• App redirects the user to Google’s Authorization Server along with:
– Client ID (issued to the app by Google)
– Redirect URI (where Google should send the user after authorization)
– Scope (what data the app wants from the service, e.g., email, profile)
– Response type (indicating the app wants an authorization code)

November 22, 2025 CS 419 © 2025 Paul Krzyzanowski 9

Client
GET https://accounts.google.com/o/oauth2/auth?
 client_id=CLIENT_ID
 &redirect_uri=REDIRECT_URI
 &response_type=code
 &scope=email profile

redirect

Authorization
Server

Note-taking app

Google

1

2
Sample message to the authorization service

Step 3: User Grants Permission

• Google asks the user, "Allow this app to access your profile and email?”

• If the user agrees, Google grants an authorization code and redirects the user back
to the app’s Redirect URI

November 22, 2025 CS 419 © 2025 Paul Krzyzanowski 10

https://yourapp.com/callback?code=AUTH_CODE
Client

Redirect

(Auth Code)

Authorization
Server

Note-taking app

Google

Auth Code

2

1

Sample message from OAuth to the app

Step 4: Exchange Authorization Code for Access Token

• App sends a request to Google’s authorization server to exchange the authorization
code for an access token

November 22, 2025 CS 419 © 2025 Paul Krzyzanowski 11

POST https://oauth2.googleapis.com/token
Content-Type: application/x-www-form-urlencoded

 client_id=CLIENT_ID
 &client_secret=CLIENT_SECRET
 &code=AUTH_CODE
 &grant_type=authorization_code
 &redirect_uri=REDIRECT_URI

Client

Authorization
Server

Note-taking app

Google

Request access token
(provide Client Secret to

prove you're the client)

Sample message from the app asking for a token

Why Can't OAuth Just Send an Access Token?

Why does OAuth exchange an authorization code for an access token?
Why not simply have the OAuth service return the access token?

1. Prevents exposure of access tokens in the URL
– URLs are often logged by browsers/proxies/servers
– Malicious actors might intercept the access token
– The authorization code has a short lifetime AND is useless without the client secret

2. Keeps access tokens confidential
– Ensures that the access token is obtained in a secure backend exchange – direct communication over a secure

(encrypted) connection

3. Prevents unauthorized token issuance
– When exchanging the authorization code for an access token, the client provides:
• Authorization code, client ID (public data), client secret (private data), redirect URI (must match original request)
• This ensures only a pre-registered applications with the correct client secret can get the access token

November 22, 2025 CS 419 © 2025 Paul Krzyzanowski 12

Step 5: Get the Access Token

• If the request is successful (valid), Google responds with an access token
– A time-limited permission to connect to the service

November 22, 2025 CS 419 © 2025 Paul Krzyzanowski 13

{
 "access_token": "ACCESS_TOKEN",
 "expires_in": 3600,
 "token_type": "Bearer",
 "refresh_token": "REFRESH_TOKEN"
}

Client

Authorization
Server

Note-taking app

Google

Access token Sample access token from OAuth

Step 6: App Uses Access Token to Fetch User Data

• App makes an API request to the service, giving it the access token
– Request user info (for example)

November 22, 2025 CS 419 © 2025 Paul Krzyzanowski 14

GET https://www.googleapis.com/oauth2/v1/userinfo
Authorization: Bearer ACCESS_TOKENClient

Note-taking app

Service

Request,
Access token

Resource
Server

Sample service request

Step 6: Service Responds to the Request

• The service responds with the requested data
– The user’s profile data, in this case

November 22, 2025 CS 419 © 2025 Paul Krzyzanowski 15

{
 "id": "123456789",
 "email": "user@example.com",
 "name": "John Doe"
}

Client

Note-taking app

Service

Request,
Access token

Resource
Server

Step 7: App logs in the User

• The note-taking app creates a session for the user using the retrieved info

November 22, 2025 CS 419 © 2025 Paul Krzyzanowski 16

Client

Note-taking app

Service

Session

Resource
Server

Key Benefits of OAuth 2.0

• Security
– The user’s credentials are never shared with the third-party app.

• Limited Access
– The app gets only the data it needs, as specified in the scope.

• Token Expiration & Refreshing:
– The app can request a new access token without making the user log in again.

November 22, 2025 CS 419 © 2025 Paul Krzyzanowski 17

The End

November 22, 2025 18CS 419 © 2025 Paul Krzyzanowski

